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Résumé
Dans cette thèse, nous présentons une étude du signal de lentille gravitationnelle
des vides ou de l’excès de densité de masse en surface (ESMD) autour des vides
cosmiques. Tout d’abord, nous proposons un nouvel algorithme de recherche de vides
conçu pour capturer l’ESMD autour des vides. Nous comparons notre algorithme
appliqué à des tranches projetées avec celui de ZOBOV et trouvons des profils
de faible lentille significativement plus profonds pour les vides définis par notre
algorithme dans le cadre d’une simulation réaliste de galaxies. Ensuite, nous testons
la cohérence entre les mesures de l’ESMD telles que mesurées par la déformation des
galaxies en arrière-plan et calculées directement à travers les profils de densité de
matière noire des mêmes vides. Nous avons trouvé des incohérences pour les vides
avec un diamètre Æ 100h

≠1Mpc le long de la ligne de visée, mais la cohérence est
maintenue pour les vides plus petits, ce qui signifie que nous sondons e�ectivement
le champ de matière noire sous-jacent en mesurant la déformation autour de ces
vides. De plus, nous montrons que les vides trouvés dans les tranches projetées,
qui sont très sensibles au phénomène de lentille gravitationnelle, sont corrélés aux
vides en 3D présentant des alignements intrinsèques entre eux.

Nous présentons également un travail moins avancé sur la modélisation de l’ESMD.
Nous nous appuyons sur l’idée que les vides projetés, qui sont plus sensibles au signal
ESMD, sont des combinaisons des vides définis dans le champ de densité en 3D.
Nous proposons un Ansatz pour relier les deux grandeurs. Cette connexion dépend
de l’abondance des vides en 3D, ainsi que de la corrélation croisée entre les positions
des vides en 3D et 2D. Nous avons e�ectué des mesures de ces grandeurs sur des
simulations N-corps pour tester le modèle. Le modèle est capable de reproduire
le profil de vide projeté dans le régime des deux vides, tandis qu’il présente des
désaccords dans le terme d’un seul vide.

Mots clés : Cisaillement gravitationnel, Vides cosmiques, Structure à grandes
échelles.
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Abstract
In this thesis, we present a study of the void lensing signal or the excess surface
mass density (ESMD) around cosmic voids. First, we propose a new void-finder
algorithm that is designed to capture the ESMD around voids. We compare
our algorithm applied to projected slices with the ZOBOV void finder and find
significantly deeper weak-lensing profiles for voids defined by our algorithm in
the context of a realistic galaxy mock. Then we test the consistency between
the measurements of the ESMD as measured through the shear of background
galaxies and directly calculated through the dark matter density profiles of the
same voids. We found inconsistencies for voids with diameter Æ 100h

≠1Mpc along
the line- of-sight, but the consistency holds for smaller voids, meaning that we are
indeed probing the underlying dark matter field by measuring the shear around
these voids. Moreover, we show that voids found in the projected slices, which are
highly sensitive to lensing, are correlated to 3D voids exhibiting intrinsic alignments
between them.

We also present a less mature work on the ESMD modelling. We rely on the
idea that the projected voids, which are more sensitive to the ESMD signal, are
combinations of the voids defined in the 3D density field. We propose an Ansatz
to connect both quantities. This connection depends on the 3D void abundance,
as well as on the cross-correlation between the 3D and 2D void positions. We
performed measurements of these quantities on N-body simulations to test the
model. The model is capable of reproducing the projected void profile in the
two-void regime, whereas present discrepancies in the one-void term.

Keywords: Weak-Lensing, Cosmic voids, Large-scale structure.
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Résumé étendu

Introduction

Ce travail s’inscrit dans un domaine de connaissance appelé « cosmologie ». La
cosmologie est l’étude de l’Univers dans son ensemble. Autrement dit, elle vise à
comprendre l’origine de l’univers, son destin et tout ce qui se passe entre les deux.

On dit généralement que la cosmologie moderne est née avec l’invention de la
Relativité Générale en 1915. Elle permet, pour la première fois, de s’interroger sur
l’évolution de l’univers dans son ensemble, sa géométrie et son contenu énergétique.
Depuis, nous avons fait un progrès étonnant, au point où nous sommes capables
d’expliquer quantitativement toutes les observations cosmologiques que nous avons
faites jusqu’à présent.

Malgré ce succès, nous pouvons a�rmer avec certitude que nous ne savons pas
tout ce qu’il faut savoir pour connaître l’Univers. Malgré l’ajustement de toutes les
données disponibles, nous disposons encore de beaucoup d’espace pour tester la
nouvelle physique. C’est l’objectif des projets à grandes échelles actuels et à venir.

Des études de structure, qui cartographieront essentiellement tout l’Univers
observable disponible. Ces données nous permettront de tester le modèle standard
de cosmologie dans les régimes que nous n’avons pas testés jusqu’à présent.

Il y a des indications claires qu’il y a quelque chose de fondamental dans la
physique qu’on ne comprend pas. Par exemple, les deux principaux ingrédients du
modèle standard de la cosmologie sont partiellement ou totalement inconnus, à
savoir la matière noire et l’énergie noire. La matière noire est responsable d’environ
25% de l’univers et n’est pas incluse dans le modèle standard de la physique des
particules. Nous avons une bonne idée du comportement collectif de ces particules
aux échelles cosmologiques, à savoir qu’elles sont froides, se déplacent à des vitesses
non relativistes et qu’elles sont sans collision, c’est-à-dire qu’elles ne se couplent
pas avec le champ électromagnétique. Nous savons aussi comment elles se sont
comportées tout au long de l’histoire cosmique et ont formé les modèles que nous
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mesurons grâce à des traceurs lumineux. Cependant, nous ne savons pas quelle est
la nature fondamentale de la matière noire, qu’elle soit composée de particules que
nous devons inclure dans le modèle standard, ou si elle est composée de trous noirs
primordiaux, de WIMP ou d’axions. Ce sont quelques-unes des possibilités qui
s’o�rent à nous au moment où cette thèse est rédigée. Le pire des cas est qu’elle
s’agit d’une nouvelle particule qui n’interagit avec le champ électromagnétique,
et nous ne pourrons jamais le détecter directement, mais seulement spéculer à ce
sujet.

À ce stade, notre stratégie consiste à nous tourner vers la nature et à rechercher
à partir d’une « pointe » de la façon de procéder. C’est, selon la vision du présent
auteur, la raison pour laquelle nous nous engageons dans cet énorme e�ort de
cartographie des structures à grande échelle. Ces données pourraient nous montrer
avec une grande précision là où exactement le modèle standard de la cosmologie est
incomplet. Par conséquent, nous devons extraire toutes les informations possibles
des données. Cette tâche n’est pas anodine et constitue l’un des principaux thèmes
sous-jacents à de nombreux travaux en cosmologie observationnelle des dernières
décennies. Ce travail fait partie de ce programme.

Le fait que les vides sont des traceurs de structures à grande échelle avec des
biais linéaires négatifs les fait transporter des informations complémentaires aux
traceurs positivement biaisés.

Les vides sont également intéressants en eux-mêmes. Puisqu’ils sont sous-denses
en matière, ils peuvent être considérés comme les meilleurs « laboratoires » pour
détecter les signatures de processus physiques qui sont moins e�caces dans les
environnements à haute densité. Cela montre que l’abondance du vide est une sonde
sensible des modèles d’énergie sombre, des neutrinos massifs et des modifications
de la gravité.

Nous pouvons « voir » les vides dans le domaine de la matière totale en mesurant
leur e�et sur les formes des galaxies d’arrière-plan. En d’autres termes, pour mesurer
la lentille faible profil de cisaillement autour des vides, qui est essentiellement la
projection de la densité des vides profil le long de la ligne de visée. Cette ligne
d’investigation est connue sous le nom de Void-Lensing.

L’état de l’art de la science de la lentille du Vide est : nous savons qu’elle est
hautement sensible aux modifications de la gravité notamment, et nous en avons
détecté quelques fois avec un rapport signal/bruit relativement important, mais
jamais réalisé d’analyse avec cet observable. Ce travail vise à apporter quelques
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contributions au développement de ce domaine.

Le paradigme �CDM

Les données suggèrent fortement que l’Univers traverse une phase d’expansion. Cela
implique que l’Univers soit dominé par un constant cosmologique à bas redshift.
Nous disposons également de preuves solides, grâce à la mesure des anisotropies dans
la distribution de température du Fond di�us cosmologique (CMB), que l’Univers
au redshift z ƒ 1090 était presque parfaitement homogène et isotrope, avec de
petites perturbations de l’ordre de ƒ 10≠5. La forme précise du spectre de puissance
CMB est en accord étonnant avec un modèle plat à six paramètres (�CDM), où les
paramètres sont les fractions densités de baryons, matière noire, profondeur optique
due à la réionisation, Hubble paramètre, l’indice spectral scalaire et l’amplitude du
spectre de puissance scalaire. La figure 1 montre l’accord entre le modèle �CDM à
six paramètres libres contre les données du télescope Planck. On peut soutenir que
cette mesure a déclenché ce qu’on appelle « l’ère de la cosmologie de précision »,
dans laquelle le modèle standard est capable d’ajuster les données avec des erreurs
de sous-pourcentage.
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Figure 1 : Anisotropies dans le CMB mesurées par le télescope Planck. La ligne
bleue représente l’ajustement du modèle �CDM à six paramètres
libres. L’axe x correspond aux moments multipolaires et l’axe y≠ est
la variance à chaque l. Les l faibles correspondent aux grandes échelles,
tandis que les l élevés correspondent aux petites échelles. Extrait de
Aghanim et al. 2020

La phénoménologie des vides cosmiques

La science des vides remonte aux années 70, où certains auteurs détectaient de
vastes régions de rayon ƒ 20h

≠1Mpc presque vides de galaxies dans la distribution
des galaxies proches. Mais après la découverte d’un vide de rayon ƒ 60h

≠1Mpc
dans la constellation du Bouvier, les vides ont commencé à recevoir davantage
d’attention dans la littérature, remettant en question s’ils sont une caractéristique
commune ou une exception dans les grandes structures. Depuis, les enquêtes sur
les galaxies ont montré que les vides sont si fréquents qu’ils occupent une grande
fraction du volume de l’Univers, constituant ainsi une caractéristique essentielle
des structures à grande échelle. L’existence de vides découle directement de la
configuration des conditions initiales et de l’e�ondrement gravitationnel, principal
moteur de la formation des structures. Alors que la matière s’accumule dans des
régions sur-denses, déterminées par les conditions initiales, les régions sous-denses
s’étendent et occupent des volumes de plus en plus grands.

L’observable le plus important des vides est la fonction de rayon des vides, ou le
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nombre de vides par intervalle de rayon, pour un volume donné.
La théorie des ensembles d’excursions est basée sur l’e�ondrement sphérique

(expansion pour les vides), dans lequel une surdensité (sous-densité) isolée évolue
dans un arrière-plan Einstein de-Sitter et finit par s’e�ondrer et se virialiser pour
former des halos, ou subit des croisements de coques entre les coques internes qui se
dilatent plus rapidement que les coques externes pour les vides. Ensuite, la valeur
extrapolée linéairement (à partir des conditions initiales) du contraste de densité
pour lequel la virialisation (traversée de coquille) se produit est utilisée comme
seuil pour définir un halo (vide). Ces valeurs sont ”c = 1, 686 et ”v = ≠2, 7, pour
les halos et les vides respectivement.

Dans l’ensemble d’excursions, le champ de densité lagrangien est lissé à une
certaine échelle R comme

S(R) © ‡
2(R) =

e
”

2(x, R)
f

=
ˆ

d
3k

(2fi)3 PL(k)W 2
R

(k), (0.1)

où PL(k) est le spectre de puissance linéaire et WR(k) est une fonction de lissage.
Le champ lissé ”(S) est ensuite utilisé pour e�ectuer une marche aléatoire, à partir
de S = 0 (R æ Œ). L’ensemble des excursions prédit la fraction des promenades qui
traverseront le seuil ”c pour la première fois dans l’intervalle de masse [M, M +dM ],
f(M). Cette fraction est ensuite convertie en densité numérique d’objets par
intervalle de masse comme

S(R) © ‡
2(R) =

e
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2(x, R)
f

=
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d
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(2fi)3 PL(k)W 2
R
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où PL(k) est le spectre de puissance linéaire et WR(k) est une fonction de lissage.
Le champ lissé ”(S) est ensuite utilisé pour e�ectuer une marche aléatoire, à partir
de S = 0 (R æ Œ). L’ensemble des excursions prédit la fraction des promenades
qui traverseront le seuil ”c pour la première fois dans le bin de masse [M, M + dM ],
f(M). Cette fraction est ensuite convertie en densité numérique d’objets par bin
de masse comme

dn

d ln M
© d

2
N

dV d ln M
= fl̄mf(M). (0.3)

En cas de ”(S) performer une marche Markovian, la fonction f(M) est donne
par
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dn

d ln M
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M
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où ‹ = ”c/‡ est la fonction de multiplicité pour les halos est défini par

fh(‹) =
Û

2
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2
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La version pour les vides est obtenue en utilisant deux barrières de densité, une
pour la formation de halos et une additionnelle pour la formation des vides, ”c

et ”v. La fonction de multiplicité pour les vides qu’on utilise dans ce travail est
donnée par
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(0.6)

Optimum Centering Void Finder (OCVF)

Dans ce travail, nous proposons un nouvel algorithme de recherche de vides. Le
fonctionnement de cet algorithme peut être résumé par les étapes suivantes :

• E�ectuez la triangulation de Delaunay pour obtenir l’ensemble des points qui
sont candidats comme positions des vides.

• Développez des cercles (ou des sphères) autour d’eux jusqu’à ce que la densité
moyenne de ces cercles atteigne un certain seuil de densité, spécifié par
fl̄v(< rv).

• Le plus grand cercle sera le premier vide du catalogue et tous les autres
vides qui l’interceptent seront écartés. Le même processus sera répété pour le
deuxième plus grand vide restant. Ce processus sera répété jusqu’à ce qu’un
vide dont le rayon est inférieur au rayon de coupe Rc soit inclus dans le
catalogue.

Nous avons utilisé une simulation de matière noire pour valider l’algorithme. La
figure 2 montre que les vides trouvés par notre algorithme sont bien capables de
reproduire la prédiction théorique.
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Figure 2 : L’abondance mesurée dans une simulation à N corps DM uniquement
de taille L = 500h

≠1Mpc par rapport à la prédiction du modèle 2LDB.

Comparaison des algorithmes

Nous avons comparé le signal de lentilles par les vides mesurés par notre algorithme
avec un algorithme déjà existant dans la littérature. La Figure 3 montre la compa-
raison entre le signal de lensing (��) autour des vides OCVF et ZOBOV. L’algorithme
OCVF présente des profils plus profonds par rapport aux vides ZOBOV. Ce fait se
réalise à cause du fonctionnement de notre algorithme et aussi dû aux vides OCVF

qui sont 2D au lieu de 3D comme les vides ZOBOV.
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Figure 3 : Left : Comparison between the ��t measurements performed using
the OCVF in slices of width �‰ = 20, 50, 100 h

≠1 Mpc (blue, orange,
and green) and ZOBOV in the bins of radius [10, 15]h≠1Mpc (red) and
[10, 25]h≠1Mpc (purple). Right : The same comparison for the cross
component ��◊.

Ensuite, nous avons vérifié la cohérence entre le profil �� mesuré en utilisant le
shear tangentiel, “t, par rapport au même profil mesuré directement en utilisant
les particules de matière noire autour des mêmes vides. La figure 5 montre la
cohérence entre ces deux pour trois choix d’épaisseur du bin, en utilisant les vides
OCVF. Notamment, les profils pour le choix de bin �‰ = 100h

≠1Mpc ne sont pas
complètement consistants. Cette incohérence se déroule à cause de l’approximation
de lentille faible, laquelle n’est pas plus valide pour les vides plus grands. Nous
avons trouvé un résultat similaire pour les vides ZOBOV.

En plus, nous avons montée que les vides 2D sont bien corrélés avec les vides 3D,
lesquels présentent un profil de densité anisotropique.

La modélisation du signal de lentille par les vides

Une fois que les vides 2D possèdent des profils plus profonds, il est désirable d’avoir
un modèle pour ces profils de densité. Nous proposons le modèle suivant
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”2D(r‹|R2D, �2D, �3D) = 1
N

ˆ
dR3D

dnv

dR3D

(R3D|�3D)

◊
ˆ

dx‹d„ P (x‹|R3D, R2D, �3D, �2D)

◊
ˆ

drÎ”3D(|r‹ ≠ x‹|, |rÎ ≠ xÎ||R3D, �3D)

(0.7)

où r‹ et x‹ sont respectivement la distance au centre du vide en 2D et la
position du centre en 3D dans le plan perpendiculaire à la ligne de visée. Comme
le profil empilé est anisotrope, nous prenons r‹ aligné avec l’axe x et le système de
coordonnées centré sur le centre du vide en 2D.

Nous avons argumenté que la fonction P doit être donnée par la corrélation entre
les vides trois et deux D.

Ensuite, nous avons mesuré chaque ingrédient du modèle 0.7, à savoir, la corréla-
tion 2D - 3D, la fonction de rayon, dnv

dR3D
et les profils 3D anisotropiques, ”3D.

0 1 2 3 4 5 6 7
r�/R̄2D

v
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�0.4
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0.0

0.2

�2
D

(r
�
)

Full Model

Weighted by dn
dR3D

Without weights

Weighted by �2D,3D

Simulation

Figure 4 : Le modèle complet (en bleu, équation 0.7), le modèle uniquement pon-
déré par l’abondance (en orange), le modèle uniquement pondéré par
les cross-corrélations 2D-3D (en rouge) et le modèle sans pondération
(en vert).

La figure 4 montre la performance du modèle par rapport à la mesure directe
du profil dans la simulation. Les di�érentes lignes montrent le modèle sans chaque
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ingrédient pour montrer l’impact de chacun sur la prédiction.
Le modèle complet est bien capable de reproduire le profil 2D dans le régime de

2-vides (au-delà du rayon), mais pas à l’intérieur du rayon du vide. La cause de
cette incohérence est sujette d’une enquête en cours.
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Figure 5 : Comparison between ��t as measured through the shear (blue, orange,
and green) and directly using the DM particles (dashed black).

Mots-clés : géométrie algorithmique, complexe planaire et rectangulaire, géodé-
sique, courbure globale non-positive
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1 Introduction

1.1 The broader context of this work

Unlike the other animals in this planet, we have an unusual need : to understand
the Universe in all its details. For millenniums, we have accumulated knowledge
and created a method for extracting some true from nature1.

This endeavour has led us surprisingly far. Regarding physics, we have built
models which are capable of predicting everything we can measure, in all scales of
the Universe2.

This work falls into one field of knowledge called “cosmology”. Cosmology is the
study of the Universe as a whole. That is, it aims to understand the origin of the
Universe, its fate and everything that happens in between. Of course, it is hard to
trace a well defined line between what is cosmology and astrophysics, for instance,
since at some point there are topics which are in between the both fields. But we
can stick with the definition that cosmology is more concerned about macro aspects
of the Universe, rather than specific micro objects, such as the life-cycle of a star.

The next natural question is why to study cosmology and how this knowledge
can impact human societies. Some development of some type of cosmology is not
unique of our modern society. If we understand cosmology as any attempt of
understanding the broader context of existence, we have evidence that indigenous
cultures, for instance, also have their stories for the Universe. In essence, other
types of cosmology do something similar to what we understand as cosmology in

1Here, I take a realism philosophical position, under which the physical theories are telling
something about reality, rather than simply being a mathematical model which fits the data,
as positivism claims. The true is probable in between realism and positivism. Moreover, it is
highly dependent on the context.

2Here I am treating the recent tensions in cosmology as possibly arising from systematic errors.
The standard model of cosmology and, in particular, of particles physics is well established
and capable of describing all data, despite some inconsistencies. Of course this does not mean
that our knowledge of fundamental physics is complete, but rather that it is hard to push
beyond the standard models.
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our scientific context3 : they identify patterns in nature and came up with a story
which is capable of explaining these patterns4. Therefore, we can say that any type
of cosmology comes from the same human need : the need for rationalizing the
world around us. Of course, the collective reason why we engage in this program
of identifying patterns in nature has not a unique answer. One can argue in a
couple of di�erent lines. For instance, from a purely Darwinian point of view, we
can understand it as an evolutionary resource. Our ancestors survived «also» due
to their ability of identifying patterns and, according to this argument, nature
drives us to this activity, ultimately, the scientific activity. Or, one can argue that
there is something that we cannot explain in this impulse. Simply we urge to
understand who we are and how it is possible that we are alive in this Universe.
This is connected with an amazement that we have when we face something much
bigger than us. According to this, the reason why we do science is close to the
reason why people engage in religious rituals - it is about the transcendence, the
contact with something bigger.

Whatever is the objective reason we search for explanations, the narratives we
develop about the world around us have the power to deeply impact our culture
beyond the scope of science. Scientific discoveries are capable of inspiring art of
all sorts, ideologies, political discourse, etc. It is hard to know to what extent
scientific discoveries impact human societies, even in cases in which there is no
trivial technological applications.

Modern cosmology is usually said to be born with the invention of General
Relativity in 1915. It allowed, for the first time, inquiries about the evolution of the
Universe as a whole, its geometry and its energy content. Since then, we have made
an astonishing progress, up to the point in which we are able to quantitatively
explain every cosmological observation we have done so far5.

Despite this success, we can firmly say that we don’t know everything there is to
know about the Universe. Despite fitting all the available data, we still have a lot of

3Here “scientific context” is emphasising that there is a key di�erence between stories of creation,
or explanations for why nature does what it does and modern science. It is a topic which is
not covered in this work, but we can highlight that the cumulative, the auto-regulated and
quantitative character play a key role in the successes of modern science. Therefore, we can
say that, at least at some level, our theories capture something about reality.

4I am using “explanation” in a broader sense, not necessarily meaning “explanation” in the
scientific context.

5Here we use the word “explanation” as synonymous of having a model which is capable of
fitting the data.
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room for testing new physics. That is the goal of current and upcoming large-scale
structure surveys, which will map basically all the available observable Universe.
This data will allow us to test the standard model of cosmology in regimes we have
not tested so far.

Puzzles in physics

There are clear indications that there is something fundamental about physics that
we don’t understand. For instance, the two main ingredients of the standard model
of cosmology are partially or completely unknown, namely, dark matter and dark
energy.

Dark matter is responsible for approximately 25% of the energy budget of the
Universe and it is not included in the standard model of particle physics. We have a
good idea of the collective behaviour of these particle on cosmological scales, namely,
that they are cold, or move in non-relativistic speeds and that they are collisionless,
i.e. that it does not couple with the electromagnetic field. We also know how it
behaved throughout cosmic history and formed the patterns we measure through
luminous tracers. However, we do not know what is the fundamental nature of dark
matter, whether it is composed of particles we have to include into the standard
model, or whether it is composed of primordial black holes, WIMPs, or axions.
These are some of the possibilities on the table at the time this thesis is being
written. The worst case scenario is that it is a new particle and does not interact
with the electromagnetic field at all, then we will never be able to detect it directly,
but only speculate about it is nature.

We call by dark energy a couple of di�erent ideas which accounts for the same
observable fact : the Universe is expanding and the velocity of recession of galaxies
increases approximately 70 km/s every h

≠1Mpc of distance from us. Given that
the Universe is described by General Relativity on large-scales, we have to add a
cosmological constant in one of the sides of Einsteins equations to reproduce this
accelerated expansion at the background level. Despite of being freedom of the
theory, i.e., the Einstein-Hilbert action is defined up to a constant term, we don’t
know how to physically justify the existence of this constant. We can interpret it
either as a curvature of space-time, by adding it to the left-hand side of Einstein’s
equations, or as a constant term in the energy-momentum tensor of a homogeneous
and isotropic fluid. In the latter case, the cosmological constant is the contribution
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of the zero-point energies of the fields in the standard model of particle physics.
We can predict a value for the cosmological constant by using the most well tested
physical theory we have, namely quantum field theory, and the result will be
many orders of magnitude di�erent than the inferred value from cosmology. This is
commonly known as “the worst prediction in the history of physics”.

If the cosmological constant is really responsible for the late cosmic acceleration,
we have to find some mechanism that cancels out the vacuum contribution and
make it have the tiny value we observe. In string-theory, the most popular candidate
to quantum gravity, the vacuum is not unique, but rather it is an ensemble of more
than 10500 vacua (or cosmological constants), each one corresponding to a di�erent
way of compactifying extra dimensions. Some argue that this “landscape” could be
solution for the cosmological problem, since we are living in an Universe drawn
from this landscape with a vacuum that allows the formation of structures and,
eventually, life. This argument is known as “the anthropic principle”. Despite of
being an attractive idea, is is highly controversial amongst physicists.

Since the Universe extends beyond the horizon, it is natural to ask whether it is
the same in arbitrarily far regions, or whether we observe a particular Universe,
emerged in a landscape of di�erent vacua, or even more radically di�erent Universes.
As discussed in Tegmark 2007, there might be four types of Multiverse. The
first one is trivial : the simplest inflationary model predicts that there is an infinite
number of Hubble volumes, each one being a particular realisation of the initial
conditions. This is nothing but a prediction of inflation. The second level allows
for di�erent physical constants amongst the Hubble volumes. The string theory
landscape is include at this level. The third and fourth types are, respectively, the
many worlds of quantum mechanics and a mathematical multiverse, where the
laws of physics are di�erent. The two latter are highly speculative. However, the
first two are natural consequences of our current paradigm in cosmology. Given
that the Universe is Euclidean, either it continues indefinitely, or at some point
things start to look di�erent w.r.t. physical constants, for instance. We can call it
a "cosmological multiverse", or simply a Universe where things are very di�erent
from place to place on ultra-large scales Carroll 2019.
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1.2 How this work is contextualized in modern
cosmology

At this point, our strategy is to look to nature and search from some “tip” of how
to proceed. This is, in the vision of the present author, why we are engaging in
this huge e�ort of mapping out the large-scale structures. This data might show us
with high precision where exactly the standard model of cosmology is incomplete.
Therefore, we need to extract every possible piece of information from the data.
This task is not trivial and is one of the main underlying theme in many works in
observational cosmology in the last decades. This work is part of this program.

In a galaxy survey, we always measure the distribution of galaxies. This distribu-
tion depends on aspects of galaxy formation which are not fully comprehended,
baryonic process and non-linear perturbation theory which are hard to model. On
the other hand, given that dark matter is collisionless, we can straightforwardly
simulate its evolution from initial conditions and by using semi-analytical models
to assign galaxies to dark matter halos, we can simulate the observed galaxy distri-
bution. Figure 1.1 shows the comparison between the distribution of galaxies in
real data and the one we obtain by assigning galaxies to dark matter halos of a
N-body simulation. It is incredible how similar they are.

Despite of being able to reproduce the distribution of tracers very well, to
extract cosmological information from it is challenging. N-body simulations are
time consuming and the semi-analytical models to assign galaxies to halos are
merely empirical. Therefore it is important to develop analytical models to compare
to the data.
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Figure 1.1 : A pie diagram of the distribution of galaxies measured by CfA2, 2dF
and SDSS surveys. The lower right pies show galaxies assigned to
dark matter halos through an HOD prescription. Figure extracted
from Springel et al. 2006

Since dark matter is easier to treat analytically, we can apply perturbation
theory to the Einstein’s equations to find the evolution of linear perturbations in
the homogeneous and isotropic dark matter fluid. To connect this prediction to
observations, we encapsulate the theoretical unknowns into a single bias parameter,
b

(1)
g

, and express the linear perturbations of any tracer at linear order as :

”g(x) = ng(x) ≠ n̄g

n̄g

= b
(1)
g

A
flm(x) ≠ fl̄m

fl̄m

B

© b
(1)
g

”g(x), (1.1)

where ng is the galaxy number density, flm is the dark matter density field and bars
indicate comoving averaged quantities. We use the subscript g to indicate that a
quantity refers to any possible tracer of large-scale structure, such as quasars, Ly-–
forests, cluster of galaxies, voids, etc.
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The linear bias relation describes the two-point correlation function of galaxy
number density on su�cient large scales k . 0.1 h Mpc≠1. A linear bias bg ”= 1
implies that the number density of galaxies responds non-linearly to flm. The
relation between the linear bias and the number density of clusters can be obtained
through the “peak-background split” Mo et al. 1996 ; Sheth et Tormen 1999.
In this picture, the linear bias parameter is the “response” of the abundance of
clusters w.r.t. changes in long wave-length perturbations. The abundance of halos,
as we further discuss in section 2.2, is determined by regions where the smoothed
density contrast exceeds a certain threshold.

Di�erent tracers of large-scale structure will then respond di�erently to long
wave-length perturbations. Halos tend to be formed where the long-wave length
perturbations have larger values, because small scale perturbations in these regions
have a higher probability of exceeding the threshold for halo formation (see Fig.
1.2), whereas voids will have a higher probability of exceeding the threshold for
void formation where the long-wave length perturbations are underdense.

Figure 1.2 : Representation of the overdensity field in one dimension. Overdensi-
ties which belongs to long-wave lentgh perturbations have a higher
probability of crossing the threshold for halo formation. Extracted
from Desjacques et al. 2018

Therefore, the derivative (or “response”) of halos and voids might be, respectively,
positive and negative, and so their linear biases.
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The fact that voids are tracers of large-scale structure with negative linear biases6

makes them carry complementary information to positively biased tracers. It has
been shown that the multi-tracer Fisher matrix is not bounded as in the single
tracer case (for instance, Abramo et al. 2013), as a consequence the precision with
which cosmological parameters can be measured is not limited by cosmic variance.
Given that voids trace the large-scale structures in a particular way compared
to any other tracer found mostly in overdensities, then it is expected that in a
multi-tracer analysis, the complementary information from voids is valuable Zhao
et al. 2022 ; Contarini, Pisani et al. 2023.

Voids are also interesting on their own. Since they are underdense in matter,
they can be thought as the best “laboratories” to detect signatures of physical
process which are less e�ective on high-density environments. It has been shown
that the void abundance is a sensitive probe of dark energy models Pisani et
al. 2015, massive neutrinos Massara, Villaescusa-Navarro et al. 2015 and
modifications to gravity Contarini, Marulli et al. 2021 ; Perico et al. 2019.

Despite being promising, the void cosmology is in its infancy, having some
challenges ahead. The most obvious limitation is the shot-noise, i.e., the fact that
voids are the most sparse tracer of large-scale structure. Furthermore, since voids
are underdense in matter, there are less galaxies in voids. Since voids can only
be observed through galaxies, the detection of voids will be a�ected by the poor
sampling of galaxies inside voids.

On the theoretical side, we don’t have so far a model to describe the density and
velocity profiles around voids. All that we can do is to model how redshift-space
distortions a�ect the density profile of voids in configuration space, or how voids
are a�ected by Alcock-Paczynski e�ect.

Regarding the fact that we only observe voids through galaxies, a natural way
around this is to “see” voids in the total-matter field by measuring their e�ect on
the shapes of background galaxies. In other words, to measure the weak-lensing
shear profile around voids, which is basically the projection of the void density
profile along the line-of-sight. This line of investigation is known as Void-Lensing.

The possibility that we could be able to measure weak-lensing around voids was

6Whether the linear bias of a void sample is negative or positive depend on the details of the
void finder algorithm, as well as the void size. But it safe to say that the largest void in
large-scale structure, or sub-voids inside them, will tend to have negative linear bias. The
positive linear bias is more related to voids-in-clouds.
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first appreciated by Amendola et al. 1999. Since then, a few measurements were
made Carles Sánchez et al. 2016 ; Fang et al. 2019 ; Melchior et al. 2014, as
well as analytical and numerical investigations have shown the sensitivity of this
observable to modifications of gravity Barreira et al. 2015 ; Baker et al. 2018 ;
Davies, Cautun et al. 2019.

Arguably, Void-Lensing science is much less developed than void science in
general. For instance, we cannot derive cosmological constraints from it so far, since
the theoretical prediction for density profiles around voids is not known. Everything
previous measurements did was to detect weak-lensing around voids, but no work
has interpreted it. Furthermore, since that the void definition is not unique and
arguably the “variance” in void definition is higher amongst di�erent void finder
than the halo definition is amongst di�erent halo finders, it is not clear which
strategy works best in a fairly realist set-up.

In summary, the state-of-the-art of Void-Lensing science is : we know it is highly
sensitive to modifications to gravity7 in particular, and we have detected a few
times with a relative significant signal-to-noise, but never performed cosmological
analysis with this observable.

This work aims to give some contributions to the development of this field. We
explore the freedom of choice in the void definition and show that for a suitable
choice, the void-lensing signal can be drastically increased. In particular, voids
found in the projected field provide a significantly deeper S/N. We show that these
voids, for which there is no theoretical prediction, are correlated with voids defined
in the 3D field, for which we know how to predict the abundance. We also propose
a model to predict the profiles of voids in the projected field with profiles of voids
found in the 3D field and their abundance. We believe that these contributions are
of the crucial importance for future analysis involving Void-Lensing.

1.3 The �CDM paradigm

Data strongly suggests that the Universe is passing through a phase of accelerated
expansion Riess et al. 1998. This implies the Universe to be dominated by a
cosmological constant at low redshift. We also have strong evidence, through the
measurement of the anisotropies in the temperature distribution of the Cosmic

7The sensitivity to modifications to gravity strongly varies with the choice of the void-finder
algorithm, as shown in Cautun et al. 2018.
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Microwave Background (CMB), that the Universe at redshift z ƒ 1090 was almost
perfectly homogeneous and isotropic, with small perturbations of order of ƒ 10≠5

Aghanim et al. 2020.
The precise shape of the CMB power spectrum is in astonishing accordance

with a flat-six-parameters model (�CDM), where the parameters are the fractional
densities of baryons, dark-matter, optical depth due to reionization, the Hubble
parameter, the scalar spectral index and the scalar power-spectrum amplitude.
Figure 1.3 shows the agreement between the six free-parameter �CDM model
against the data from Planck telescope. Arguably, this measurement started the
so-called “precision cosmology era”, in which the standard model is capable of
fitting the data with sub-percent errors.

The observation that the CMB is almost homogeneous and isotropic, implies that
the metric of the Universe is the one of an homogeneous and isotropic Universe on
su�cient large scales, unless there is an unknown mechanism which acts on scales
of the order of the horizon which breaks the isotropy with time. In fact, we have
evidence that the Universe is indeed homogeneous and isotropic at low redshift on
scales Ø 70h

≠1Mpc Ntelis 2016 ; Sarkar et al. 2009.
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1.3.1 A brief history of background expansion

Figure 1.3 : Anisotropies in the CMB measured by the Planck telescope. The blue
line is the fit of the six free-parameters �CDM model. The x-axis
is the multipole moments and the y≠axis is the variance at each l.
The low ls correspond to large-scales, whereas high ls correspond to
small scales. Extracted from Aghanim et al. 2020

Given that there is no such mechanism, the evolution of the background Universe
is determined by the scale factor a(t), which is the stretching factor. The relation
between the redshift and the scale factor is :

1 + z = ⁄obs
⁄emit

= aobs
aemit

= 1
aemit

, (1.2)

where by convenience, it is defined that the scale factor at present time is unity.
The metric on su�cient large scales can then be written as

ds
2 = gµ‹dx

µ
dx

‹ = ≠dt
2 + a(t)2

d�2
, (1.3)

where d�2 is a 3D hypersurface of constant t :

d�2 = dr
2

1 ≠ Kr2 + r
2(d◊

2 + sin2(◊)d„
2). (1.4)
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In the above expressions, K = 0, 1, ≠1 corresponds to flat, c = 18 and we use
spherical coordinates for the spatial section, (x1

, x
2
, x

3) = (r, ◊, „). This metric is
known as Friedmann-Lamaître-Robert-Walkson (FLRW) metric. Notice that the
time evolution of the metric is completely determined by the scale factor.

In a homogeneous and isotropic Universe the energy momentum tensor reduces
to the one of a perfect fluid :

T
µ

v
= (fl + P )uµ

uv + P ”
µ

v
, (1.5)

where u = (≠1, 0, 0, 0) is the four-velocity of the fluid in comoving coordinates, fl

and P are, respectively, the energy density and pressure of the fluid and ”
‹

µ
is the

Kronecker delta. The pressure can be related to the density (on large-scales) as
P = wfl.

The evolution of a(t) and fl(t) can be found by plugging these ingredients into
the Einstein’s equations9 :

Rµ‹ ≠ 1
2gµ‹R = 8fiGTµ‹ , (1.6)

where Rµ‹ is the Riemann tensor, defined as

Rµv = �–

µ‹,–
≠ �–

µ–,‹
+ �–

µ‹
�—

–—
≠ �–

µ—
�—

–‹
(1.7)

where
�–

µ‹
= 1

2g
–— (g—µ,‹ + g—‹,µ ≠ gµ‹,—) (1.8)

are the Christo�el symbols (or connection) and R © gµ‹R
µ‹ is the Ricci tensor.

By plugging these ingredients into the Einstein’s equations, we obtain the Fried-
mann equations

H(t)2 = 8fiG

3 fl(t) ≠ K

a(t)2 ,

3H(t)2 + 2 ˙H(t) = ≠8fiGP ≠ K

a(t)2 ,

(1.9)

where

8This convention will not always hold through out this work. We will explicitly inform whenever
c = 1 is used.

9Notice that we are not including the cosmological constant on the left-hand side. That’s because
here we understand the cosmological constant as a form of energy, which is included in fl.
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H(t) © 1
a

da

dt
(1.10)

is the Hubble parameter.
The continuity equation follows from the Bianchi identities

ÒµG
‹

µ
© ˆG

µ

‹

ˆxµ
+ �µ

–µ
G

–

‹
≠ �–

‹µ
G

µ

–
= ÒµT

‹

µ
= 0, (1.11)

where Òµ denotes covariant derivatives. The last equality gives the continuity
equation

fl̇(t) + 3H(t)(fl(t) + P (t)) = 0. (1.12)

We can rewrite equation 1.9 as

�M + �K = 1, (1.13)

where

�M © 8fiGflM

3H(t)2 , �K © ≠ K

(a(t)H(t))2 , (1.14)

with M denoting the sum of matter, radiation and dark-energy components.
Let’s consider the case in which the Universe is flat and dominated by a single

component. Then we can solve the Friedmann equations analytically and get to
the following solutions :

fl(t) Ã a(t)≠3(1+w)
, a(t) Ã t

2/(3(1+w))
. (1.15)

For radiation, w = 1/3 and for matter, w = 0. In order to reproduce the late
cosmic acceleration, the equation of state for dark energy must be w < ≠1/3.
Since the data is consistent with a constant dark-energy, the equation of state
must be w = ≠1. The negative pressure is a requirement for having a constant
energy while the volume expands. Therefore, in the cases of a radiation, matter and
dark-energy dominates universes, we have, respectively flr(t) Ã a(t)≠4 (a(t) Ã t

1/2),
flm(t) Ã a(t)≠3 (a Ã t

2/3) and fl� = cte (a Ã exp(Ht)).
Therefore, at early times, the radiation dominates, at aeq = 4.15 ◊ 10≠5�≠1

m
h

≠2

switches to a Ã t
2/3 in the matter-dominated time and then to exponential growth

at late times, when dark-energy takes over. The fact that dark-energy only takes
over very recently is referred as “the coincidence problem”, because we happen to
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live right at this transition between matter and dark energy domination.

Figure 1.4 : The evolution of the scale factor as a function of time. At early times,
the universe was radiation-dominated and the expansion of the scale
factor was proportional to t

1/2, eventually it turns to the matter-
domination era, with a(t) Ã t

3/2 and very recently dark energy takes
over . Extracted from Dodelson et Schmidt 2020

1.3.2 The inhomogeneous Universe in a nutshell

Our Universe is not as simple as a homogeneous and isotropic spacetime with an
equally smooth matter distribution. Instead, the Universe is a complicated place
where radiation, dark matter and baryons interact in many ways, in particular
gravitationally, leading to the formation of all kinds of structures, from atomic
nuclei, atoms and molecules (driven by nuclear and electromagnetic interactions)
to star, galaxies and clusters (driven by gravity).

Empirically, we know that matter is distributed in a peculiar way throughout
space. The way by which matter organized itself into the Large-Scale Structure
(LSS) is a booming field of research. The LSS encapsulates a lot of information
about fundamental features of nature, and its detailed study is a promising way to
shed light upon deep facts concerning the underlying laws of physics.

If we look upon spherical regions large enough (≥ 200 h
≠1 Mpc), the contrast
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between the matter density inside this sphere and the background density is much
less than 1, and we can use linear theory to obtain many useful results. This is the
subject of this section.

1.3.3 Gauge-invariant variables

In GR we are allowed to choose any coordinate system. This freedom of choice,
or gauge freedom, is a fundamental feature of covariant theories of gravity, but
it can lead to di�culties interpreting the physical meaning of perturbations. In
particular, it may happen that with one choice of coordinate system we compute
density perturbations which, upon closer inspection, are not manifested in the
physical observables.

Following the argument by Mukhanov Mukhanov 2005, consider a homogeneous
and isotropic universe where the energy density is distributed evenly throughout
the space, i.e. fl(x, t) = fl(t). Since any coordinate system is allowed, we can
make the particular choice such that the time coordinate relates to the old one as
t̃ = t + ”t(x, t), where ”t(x, t) π t. Thus, the energy density in the new coordinate
system fl(t̃, x) = fl(t(x, t̃)) will depend on x in general. Furthermore, with this
coordinate choice we generate perturbations which are not present in the old
coordinate system. Indeed, if we expand fl(t),

fl(t) = fl(t̃ ≠ ”t(x, t)) ƒ fl(t̃) ≠ ˆfl

ˆt
”t , (1.16)

we see that the energy density splits into a background term, fl(t̃), plus a non-
physical perturbation, which is entirely due to our choice of coordinates. Conversely,
it is also possible to remove a real perturbation by choosing a coordinate system such
that the hypersurfaces of constant energy density coincide with the hypersurfaces
of constant time.

We could think that if gauge-invariant perturbations exist, we could check if
the perturbations due to a particular choice of coordinate system is fictitious or
not. If these gauge-invariant perturbations vanish in one coordinate system, they
must vanish in any coordinate system. Therefore, if there are perturbations in
any coordinate system and the gauge-invariant perturbations vanish, then these
perturbations are fictitious and can be removed by a change of coordinates.

Here we will briefly discuss gauge transformations. For a exhausting discussion
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on this topic, see Ma et al. 1995.

1.3.4 Classification of perturbations

The perturbed FLRW spacetime can be expressed in terms of the metric

ds
2 = [g(0)

µ‹
+ ”gµ‹(x–)]dx

µ
dx

‹
. (1.17)

It is useful to define the conformal time

÷ ©
ˆ

dt

a(t) . (1.18)

The background metric is written as :

g
(0)
µ‹

dx
µ
dx

‹ = a
2(÷)[≠d÷

2 + ”ijdx
i
dx

j] . (1.19)

The perturbations on the metric ”gµ‹ can be split into scalar, vector and tensor
perturbations which, in the most general form, can be written, respectively, as

”g
scalar

ij
=

Q

a2a
2
„ B, i

B, i 2a
2(Â”ij + E, ij)

R

b (1.20)

for scalar perturbations,

”g
vector

ij
=

Q

a 0 Si

Si a
2(Fi,j + Fj,i)

R

b (1.21)

for vector perturbations, and

”g
tensor

ij
=

Q

a0 0
0 hij

R

b (1.22)

for tensor perturbations. In the expressions above, Si and Fi are divergenceless
(Si

,i = F
i
,i = 0), so each has two independent components, and hij is a traceless and

transverse tensor, i.e, h
i

i
= h

i

j
,i = 0. Since h

i

j
is a symmetric tensor (6 independent

components), the traceless condition eliminates one component and the transverse
conditions eliminate 3 components, leaving two independent components. Therefore
the scalar, vector and tensor independent functions give ten independent functions.
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The only perturbations we are interested in when treating cosmological inhomo-
genities are scalar perturbations, typically because they are the only ones that can
be sourced by energy density perturbations.

1.3.5 Gauge transformations

Consider the infinitesimal transformation :

x
fl ≠æ x̃

fl = x
fl + ›

fl
, (1.23)

where ›
fl = (›0

, ›
i) and ›

i = ›
i

‹ +’
,i can be split into a 3-vector with zero divergence

plus the spatial derivative of a scalar function ’. The metric calculated in the new
coordinate system will transform through the usual tensor transformation law. The
perturbed part transforms in a non-trivial way Mukhanov 2005 :

”g–— æ ”g̃a— = ”g–— ≠ g
(0)
a—,“

›
“ ≠ g

(0)
“—

›
“

,–
≠ g

(0)
–”

›
”
,— . (1.24)

Using the transformation law (1.24) and the scalar part of the perturbed metric
(1.20), we easily find how the scalar perturbation functions transform under (1.23) :

„ æ „̃ = „ ≠ 1
a

1
a›

0
2Õ

, B æ B̃ = B + ’
Õ ≠ ›

0

Â æ Ẫ = Â + a
Õ

a
›

0
, E æ Ẽ = E + ’ .

(1.25)

That is, the way that scalar perturbations transform when we pass from the
background metric to any other coordinate system is totally defined by the functions
›

0 and ’. We can choose an infinitesimal transformation whose e�ect is to vanish
any of the scalar functions (1.25). However, if we can make them all vanish, then
in the new coordinates we would not see any perturbation, and the homogeneous
and isotropic background would be exact. In other words, in the presence of
perturbations there is a minimum set of physical degrees of freedom that cannot
be made to vanish by any choice of coordinates.

It is easy to check that the combinations

� © „ ≠ 1
a

[a (B ≠ E
Õ)]Õ , � © Â + a

Õ

a
(B ≠ E

Õ) , (1.26)

are gauge invariant – i.e. they do not depend on the transformation (1.23). Thus,
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if the functions (1.26) vanish in one coordinate system, then they vanish in any
coordinate system and there are no real perturbations.

The particular choice of ›
0 and ’ corresponds to a gauge choice. A widely used

gauge in the literature is to treat scalar inhomogeneities as fixed on the background,
corresponding to ›

0 = ’ = 0. In this gauge – the Newtonian gauge – the gauge
invariant functions are simply � = „ and � = Â.

In the Newtonian gauge, the invariant distance interval takes the form

ds
2 = a

2(÷)
Ë
≠(1 + 2„)d÷

2 + (1 + 2Â)”ijdx
idx

j
È

. (1.27)

1.3.6 Qualitative analysis of linear perturbations

The primordial Universe was a very smooth and hot plasma, which was also very
opaque : the mean free path of a photon one second after the Big Bang was only
about the size of an atom, while today a photon can travel almost freely over
cosmological distances. The initial conditions of the Universe are usually described
by the mechanism known as cosmic inflation. Although we are not sure if inflation
really is the theory which describes the primordial universe, it is the best explanation
for the so-called horizon and flatness problems. The horizon problem expresses
the fact that the CMB is extremely isotropic, despite the CMB photons arriving
to us from di�erent directions which, at the time of decoupling, apparently never
had the chance to have causal contact. This condition is best expressed in terms
of the conformal time ÷ : this is also the maximum comoving distance traveled by
a photon since the Big Bang. When ÷k π 1, the wavelength of a perturbation is
much larger than the maximum distance traveled by a photon since the Big Bang,
and no causal physics could have a�ected the evolution of such perturbations.

Inflationary theory proposes a mechanism by which the causal contact between
apparently disconnected places was possible in the very early Universe. This
mechanism consists of exponential expansion at the very beginning, and it can be
caused by a scalar field – the inflaton Baumann 2009. It was also found, early
in the development of inflation, that this mechanism can also provide the initial
conditions for cosmic perturbations. With the next generation of LSS surveys we
are going to impose stringent constraints on inflationary models. In particular, the
bispectrum measurement can impose interesting constraints on the fNL parameter,
which parameterizes the deviation from Gaussianity in the primordial fluctuations
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Tellarini et al. 2016. Although the treatment of inflation is out of the scope of
this work, we will implicitly assume initial conditions for density fluctuations which
are consistent with inflation.

Before discussing perturbation theory quantitatively, let us briefly expose what
one might expect from the math. The dynamics of the density contrast responds
mainly to two forces, namely, pressure and gravity as represented schematically
by :

”̈ + [Pressure ≠ Gravity]” = 0 . (1.28)

If gravity dominates, one expects the density contrast to grow exponentially ; on
the other hand, if pressure is not negligible, the density contrast oscillates in time.

Figure 1.5 : The linear evolution of the gravitational potential „.

This qualitative picture leads naturally to three stages of evolution of cosmological
perturbations. At aeq ƒ 4 ◊ 10≠4 the energy densities of radiation and matter were
equal, so before that time radiation dominates, and after that time it is matter
which dominates. As shown in Fig. (1.5), at early times (÷k π 1) all modes
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are outside the horizon and therefore none of them evolve (they are frozen). At
a ƒ 10≠6 the small scale mode k = 1.9 h Mpc≠1 enters the horizon and begins to
decay (this happens because radiation pressure tends to dilute perturbations). The
modes which entered the horizon after the matter-radiation show an evolution very
di�erent from that of the modes which entered before. Finally, at late times, when
the universe is matter dominated, all modes evolve in the same way.

The period of transition between radiation and matter domination is described by
the transfer function, which is defined as the ratio between the potential for mode
k well after matter starts to dominate (alate) and the potential for an extremely
large-scale mode at the same time :

T (k) = �(k, alate)
�Large≠Scale(k, alate)

. (1.29)

We will show that the large-scale solution is the primordial potential decreased by
a factor of 9/10. Thus,

�(k, alate) = 9
10�P T (k) . (1.30)

In the above result, �P is the primordial potential (predicted by some inflationary
model). Roughly speaking, the transfer function encodes the information of how
modes change in the matter-radiation equality period.

After the matter-radiation equality, all modes evolve equally and the evolution
of perturbations does not depend on k (although the initial conditions in the
matter era do, as evidenced by the scale-dependence of the transfer function), in
such a way that the evolution is determined by a function of the scale factor, or
equivalently a function of redshift. Once the potentials are set out, one expects
matter to be attracted by regions where there is more matter (overdense regions).
The growth of such regions is described by the Growth function, which is defined
by the ratio between the potential at some time and its value well before matter
starts to dominate :

D(a)
a

= �(a)
�(alate)

, (a > alate) . (1.31)

Therefore, the evolution of the potential can be written as :

�(k, a) = 9
10�P (k)T (k)D(a)

a
, (a > alate) . (1.32)
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If one could measure some quantity which is related to the potential, then the
model for inhomogeneities in the Universe could be compared to the data. We can
relate the potential to the density contrast through the Poisson equation, and the
density contrast is measured directly in LSS surveys – to be more precise, what we
actually measure is the matter power spectrum P (k) or the correlation function
›(r).

The Fourier version of Poisson’s equation reads :

� = 4fiGflma
2
”

k2 . (1.33)

Using (1.32), the background density of matter flm = �mflcr/a
3 and the critical

density flcr = (3/2)H2
0 /(4fiG), the density contrast is :

”(k, a) = 3
5

k
2

�mH
2
0

�P (k)T (k)D(a), (a > alate) . (1.34)

Finally, the density contrast is related to the power spectrum as :

P (k, a) = È|”(k, a)|2Í , (1.35)

which is the measured quantity.
After the inflationary period, the expansion rate decelerates and perturbations

start to fall back inside the Hubble horizon H
≠1. The small scales enter the horizon

before su�ering the e�ect of radiation pressure, which tends to dilute perturbations.
There is a value of k (keq ƒ 0.02 h Mpc≠1) which happens to come into the horizon
exactly at the time of equality. This means that keq denotes the smallest scale
that does not su�er the e�ects of radiation pressure, and therefore is not diluted.
Now, taking into account the term k

2 in Eq. (2.37), which comes from the Poisson
equation, we conclude that keq corresponds to the peak of the power spectrum :
scales smaller than keq entered the horizon before the equality and were diluted by
pressure gradients ; and scales larger than that are suppressed by the k

2 term.
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1.3.7 Quantitative analysis of linear perturbations

The set of equations we need in order to characterize the photons and matter
perturbations are the Boltzmann equations Dodelson 2003 :

�̇r.0 + k�r.1 = ≠�̇,

�̇r.1 ≠ k

3�r.0 = ≠k

3 �,

”̇ + ikv = ≠3�̇,

v̇ + ȧ

a
v = ik�,

(1.36)

where �r.0 and �r.1 are the monopole and dipole of radiation perturbations (photons
+ neutrinos), and v is the velocity field of dark matter. These equations are
complemented by the relativistic Poisson equation for the potential, which is given
by the time-time component of Einstein’s equations :

k
2� + 3 ȧ

a

3
�̇ + ȧ

a
�

4
= 4fiGa

2 [fldm” + 4flr�r,0] , (1.37)

where fldm is the dark matter density. We can also write an algebraic equation for
the potential, obtained through the combination of space-time Einstein’s equations
with the Poisson equation :

k
2� = 4fiGa

2
5
fldm” + 4flr�r,0 + 3aH

k
(ifldmv + 4flr�r,1)

6
. (1.38)

This set of equations needs some remarks, since they are not the full set of
Boltzmann equations in all its glory ibid., instead, they are result of two simplifica-
tions. First, the baryons were neglected, since they compose only a small fraction
of matter. Second, the higher moments of photon perturbations (�2, �3, ...) were
neglected. This latter simplification is justified because before the recombination
photons are strongly coupled to matter. Since perturbations in non-relativistic
matter are only described by the two first momenta, which correspond to ” and v,
then the photon perturbations are well described by the two first momenta �0 and
�1.

Analytical solutions for the full set of equations are impossible to obtain. Hence,
we will perform approximations and obtain analytical solutions valid at some times
and on some scales. These approximations are illustrated by Figure (1.6). On
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super-horizon scales we can neglect terms multiplying k, since they will be k÷ times
smaller than the other terms, and on super-horizon scales k÷ π 1. On scales which
enter the horizon before the equality, we know that the solution for the potential is
a constant (after the transfer function regime). At the radiation-dominated epoch
we can neglect matter perturbations and at the matter dominated epoch we can
neglect radiation perturbations.

Figure 1.6 : Regimes where it is possible to perform approximations and derive
analytical solutions. Figure extracted from Dodelson 2003
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Large scales

On large and super-horizon scales, we can neglect terms involving k, and therefore
the set of Eqs. (1.36)-(1.38) reduces to the three equations :

�̇r,0 = ≠�̇, (1.39)

”̇ = ≠3�̇, (1.40)

3 ȧ

a

3
�̇ + ȧ

a
�

4
= 4fiGa

2 [fldm” + 4flr�r,0] . (1.41)

Therefore, at first approximation, the dynamics of perturbations does not depend
on the velocity field v nor on the dipole �1. This feature can be intuitively
understood as the independence of the large scale perturbations on local fluxes of
matter and radiation. On large scales the small-scale fluxes cancel, and only the
monopole term determines the dynamics.

The first two equations lead to ” ≠3�r,0 = const. The adiabatic initial conditions
set this constant to zero. Using it in the Einstein’s equation (equation (1.41))
yields :

3 ȧ

a

3
�̇ + ȧ

a
�

4
= 4fiGa

2
fldm”

C

1 + 4
3y

D

, (1.42)

where y © a

aeq
© fldm

flr
will be the evolution variable. Transforming the derivative

d

d÷
= H y

d

dy
, the Einstein equation becomes :

y �Õ + � = y

2(y + 1)”

C

1 + 4
3y

D

= 3y + 4
6(y + 1)” , (1.43)

where the prime denotes derivatives with respect to y. Using ”
Õ = ≠3�Õ and

di�erentiating with respect to y leads to :

�ÕÕ + 21y
2 + 54y + 32

2y(y + 1)(3y + 4)�Õ + �
y(y + 1)(3y + 4) = 0 . (1.44)

In terms of the variable u © y
3

Ô1+y
�, the above equations become :

u
ÕÕ + u

Õ
C

≠2
y

+ 3/2
1 + y

≠ 3
3y + 4

D

= 0 . (1.45)
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Integrating and exponentiating yield :

u
Õ = A

y
2(3y + 4)

(1 + y)3/2 . (1.46)

With the definition of u we have :

y
3

Ô1 + y
� = A

ˆ
y

0
dy

Õ y
Õ2 (3y

Õ + 4)
(1 + yÕ)3/2 , (1.47)

where A is a constant to be determined. The analytic solution for this equation is

� = �(0)
10

1
y3

Ë
16

Ô
1 + y + 9y

3 + 2y
2 ≠ 8y ≠ 16

È
. (1.48)

This is the analytic form for the potential on super-horizon scales, neglecting
baryons. The important result that this solution gives us is that for large y, i.e, in
the matter-dominated era, the y

3 term dominates and therefore � æ 9
10�0. That is,

the largest super-horizon scales are slightly suppressed as the Universe passes from
radiation-dominated to matter-dominated era. One might think that super-horizon
scales should not be a�ected by what is happening inside the horizon since these
scales are out of causal contact. Actually, inside the super-horizon scales there are
smaller scales which are in causal contact, then, in some level perturbations on the
largest scales will be a�ected. Eventually these scales will enter the horizon deep in
the matter-dominated era and thus the potential will remain constant.

Small scales

The treatment of small scales can also be divided into two regimes : (i) super-horizon
modes crossing the horizon well within the radiation era, and (ii) sub-horizon modes
crossing the equality between matter and radiation eras. In the first regime, we
can neglect the matter perturbations, since although matter perturbations are
influenced by the potential, they do not influence the potential. Then, having a
solution for the potential neglecting matter, we can use it as source to the evolution
of matter perturbations.

In order to find a solution for the potential in regime (i), we use the algebraic
equation (1.38). Neglecting matter, (1.38) reads :
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� = 6a
2
H

2

k2

5
�r,0 + 3aH

k
�r,1

6
. (1.49)

In the above equation, we used that H
2 = 8fiGflr/3 in the radiation era, where

we can also write H ƒ H0
Ô

�ra
≠4 = H0

Ô
�ra

≠2. Thus, a
2
H is approximately

constant in the radiation era, and since ÷ =
´

a

0
da

a2H
, then ÷ = 1/aH well within the

radiation era. Therefore, equation (1.49) along with the two equations for radiation
perturbation,

�̇r,0 + k�r,1 = ≠�̇
and

�̇r,1 ≠ k

3�r,0 = ≠k

3 � ,

yield :

≠ 3
k÷

�̇r,1 + k�r,1

C

1 + 3
k2÷2

D

= ≠�̇
Ë
1 + k

2
÷

2

6

È
≠ �k

2
÷

3 (1.50)

and

�̇r,1 + 1
÷

�r,1 = ≠k

3 �
Ë
1 ≠ k

2
÷

2

6

È
. (1.51)

Combining these two equations and eliminating �̇r,1 and �r,1, we end up with a
second order equation for the potential :

�̈ + 4
÷

�̇ + k
2

3 � = 0 . (1.52)

This is the equation we want to solve with the initial condition that the potential is
constant (before crossing the horizon). Rewritten in terms of the variable u © �÷,
equation (1.52) reads :

ü + 2
÷

u̇ +
A

k
2

3 ≠ 2
÷2

B

u = 0 . (1.53)

We recognize the above equation as the spherical Bessel equation of order 1. The
general solution of this equation is a combination of the spherical Bessel function,
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j1(k÷/
Ô

3) and the spherical Neumann function, ÷1(k÷/
Ô

3). The latter goes to
infinity at small argument, then it is not part of our solution. The spherical Bessel
function of order 1 can be written as :

� = 3�p

Q

a
sin

1
k÷/

Ô
3

2
≠ (k÷/

Ô
3) cos

1
k÷/

Ô
3

2

(k÷/
Ô

3)3

R

b . (1.54)

As we expect from our qualitative analysis, when the mode enters the horizon
(k÷ . 1), it decreases (due to radiation pressure) and oscillates (due to the
gravitational instability of baryons). Figure (1.8) shows two modes, k = 10 h Mpc≠1

and k = 1 h Mpc≠1, which enter the horizon in the radiation era, the dashed-lines
are the numerical solutions (including matter perturbations) and the solid-lines are
the analytical approximations. We see that our analytical approximation starts to
break for modes entering the horizon at a ƒ 10≠5, i.e., our analytical approximation
is only valid deep in the radiation era, since the equality happens at aeq ƒ 4 ◊ 10≠4.

Figure 1.7 : The analytical (solid-line) and numerical (dashed-line) solutions for
the potential. As soon as the mode enters the horizon in the radiation
dominated era, it decreases and oscillates. Figure extracted from
Dodelson 2003.
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We can use the potential as a source for the evolution of matter perturbations.
Combining the third and fourth equations in (1.36), we can write :

Figure 1.8 : The analytical (solid-line) and numerical (dashed-line) solutions for
the matter density contrast. Figure extracted from Dodelson 2003.

”̈ + 1
÷

”̇ = S(k, ÷) , (1.55)

where,
S(k, ÷) = ≠3�̈ + k

2� ≠ 3
÷

�̇ . (1.56)

The solution for the above equation is Dodelson 2003 :

”(k, ÷) = A �p ln(Bk÷) . (1.57)

Ref. Hu et al. 1996 found the values A = 9.6 and B = 0.44 for the two remaining
constants.

This solution can be interpreted as follows. The potential of a certain mode
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is frozen until it enters the horizon and also the matter density contrast, this is
expressed by the constant term in (1.57), A �p ln(B). After entering the horizon,
the matter density contrast grows, despite the radiation pressure, but the growth is
logarithmic (expressed by A �p ln(k÷)) and slower than in the matter dominated era,
where it grows as ” Ã a. Figure (1.8) shows our analytical solution (dashed-lines)
and the numerical solution (solid-lines). We see that when getting closer to the end
of the radiation era, the density contrast starts to grow faster.

Finally, we will obtain analytic solutions for the regime (ii), where small scales
modes are well within the horizon and cross the epoch of equality between matter
and radiation.

We can also perform an approximation that will simplify our calculations :
neglecting the radiation perturbations. Arguably, when getting closer to the equality,
eventually, it will happen that the matter perturbations dominate over the radiation
perturbations, since radiation continuously dilutes on scales inside the horizon,
despite the fact that flr is still larger than fldm. In other words, the potential
evolution is dominated by matter perturbations even before the equality.

Therefore, using our prescription of turning three equations into one second order
equation, we can use the the third and fourth equations in (1.36) and the algebraic
(1.38) to obtain :

”
ÕÕ ≠ ik(2 + 3y)v

2aHy2(1 + y) = ≠3�ÕÕ + k
2�

a2H2y2 . (1.58)

To obtain the above equation, one needs to consider that perturbations are well
within the horizon, which leads to aH/k π 1. We are again using the ratio between
the scale factor with its value at the equality, y, and primes denotes derivatives
with respect to this variable.

Realizing that the potential is much smaller than ” on sub-horizon scales, we
can use the equation

”
Õ + ikv

aHy
= ≠3�Õ

, (1.59)

to replace ikv/(aHy) by ≠”
Õ and finally obtaining the Meszaros equation,

”
ÕÕ + 2 + 3y

2y(y + 1)”
Õ ≠ 3

2y(y + 1)” = 0 , (1.60)
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which has as solution :

”(k, y) = C1D1(y) + C2D2 , (1.61)

where D1(y) = y + 2/3 and D2(y) = D1(y) ln
ËÔ1+y+1Ô1+y≠1

È
≠ 2Ô1 + y. This solution is

valid on small scales and well after the mode entered the horizon, because at this
regime the growth is dominated by the matter perturbations. Let us express this
as y ∫ yH , where yH is the ratio between the scale factor at the moment the mode
k enters the horizon to the scale factor at the equality. Thus, yH is a function of k.

In order to determine the two unknown coe�cients C1 and C2, we need to match
this solution to our previous solution for modes crossing the horizon well within the
radiation era. For these modes, yH π y π 1. In order to match the two solutions,
we need to guarantee that the solutions are equal as well as their first derivatives :

A�p ln(Bym/yH) = C1D1(ym) + C2D2(ym)
and

A�p

ym

= C1D
Õ
1(ym) + C2D

Õ
2(ym) ,

where ym satisfies the condition yH π ym π 1. It is important to note that the
Meszaros equations do not depend on k, i.e., all modes evolve identically on the
linear regime. It is also important to note that the solution for the Meszaros
equation can not be extrapolated for late times, since at late times the energy
budget of the Universe is dominated by dark energy. In order to find a solution
valid at late times we need to generalize the Meszaros equation taking into account
dark energy.

The y ∫ 1 limit of the Meszaros equation, along with the redefinition of the
coe�cient multiplying ”, 4fiGfldm = (3/2)H2

0 �ma
≠3, and the continuity equation,

lead to :

d
2
”

da2 +
A

d ln(H)
da

+ 3
a

B
d”

da
≠ 3�mH

2
0

2a5H2 ” = 0. (1.62)

This equation is now written in terms of a instead of y.
Eq. 1.61 shows that density fluctuations grow as the Universe expands – i.e.,

initially overdense regions become denser, and underdense regions tend to become
even more empty of matter. This growth of structures is the result of gravity
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attracting matter towards the initial density peaks, and causing the Universe to
become increasingly inhomogeneous. Moreover, it also generates peculiar velocities
as matter clumps start to fall into the gravitational potential wells of the overdense
regions.

1.4 The cosmological constant problem

The classical action for gravity, the Einstein-Hilbert action, is defined up to an
additive constant term as

S = 1
2Ÿ

ˆ
d4

x
Ô

≠g (R ≠ 2�B) + Smatter [gµ‹ , �] , (1.63)

where Ÿ © 8fiG/c
4. The first term (inside parenthesis) is the geometrical part of

the action, where we add the bare cosmological constant �B. The bare cosmological
constant is simply a free parameter of the action, which is to be constrained by
data. The second term is the matter action and � is a generic field.

Variation of the action 1.63 w.r.t. the metric yields the Einstein’s equations

Rµ‹ ≠ 1
2Rgµ‹ + �Bgµ‹ = ŸTµ‹ , (1.64)

where the stress-energy tensor is defined by

Tµ‹ = ≠ 2Ô
≠g

”Smatter
”gµ‹

. (1.65)

Before the observational fact that the Universe is passing through a phase of
accelerated expansion Riess et al. 1998, it was thought that the cosmological
constant would vanish, i.e., that some mechanism would cancel out all possible
contributions to it. After ibid., within the framework of general relativity, the
accelerated expansion requires that the Einstein’s equations have a constant term,
which is interpreted as an energy component of negative pressure.

But what would be the interpretation of this cosmological constant, and is there
any reason to expect that it is there ? In the way we expressed the Einstein’s
equations 1.64, the bare cosmological constant is simply a property of space-time,
or an intrinsic curvature of it, i.e., in the absence of a stress-energy tensor, the space-
time is not Minkowski, but rather de Sitter space-time. This interpretation is rather
misterious since it is not clear the physical origins of this intrinsic property of space-
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1 Introduction – 1.4 The cosmological constant problem

time. It seems clear that we need a theory of quantum gravity to understand what
the cosmological constant at the left hand-side would mean, since the framework
of general relativity is merely classical and therefore it is probably only an e�ective
theory of gravity which emerges from fundamental quantum gravity theory 10.

The leading candidate 11 for a quantum theory of gravity is string-theory, which
provides a possible mechanism to explain the cosmological constant : di�erent ways
of compactifying extra-dimensions would be associated to di�erent false vacua
Susskind 2003. This number would be of order of ƒ 10100. Therefore, di�erent
Universes have di�erent false vacua, or cosmological constants and we ended up
living in the one we observe for anthropic reasons. As already mentioned, this
explanation is highly speculative and controversial amongst cosmologists.

If we understand the cosmological as a constant term in the stress-energy tensor,
or putting it in the right hand side of Einstein’s equations 1.64, then we are
assuming that there is a matter/energy field which has constant energy through out
cosmic expansion. This is what we man by “dark energy”. There is indeed a reason
to believe that it must be a constant contribution to the stree-energy tensor : the
vacuum state of the stress-energy tensor does not vanish and therefore, it must
appear as a constant in the right-hand side of Einstein’s equations.

Consider, for instance, a scalar field �, the corresponding action is

S� = ≠
ˆ

d
4
x
Ô

≠g

51
2g

µ‹
ˆµ�ˆ‹� + V (�)

6
. (1.66)

The corresponding stress-energy tensor reads

Tµ‹ = ˆµ�ˆ‹� ≠ gµ‹

51
2g

–—
ˆ–�ˆ—� + V (�)

6
. (1.67)

The above stress-energy tensor is minimized when the kinetic energy vanishes
and the potential is taken to sit at its minimum, i.e.

ÈTµ‹Í = ≠V (�min)gµ‹ © flvacgµ‹ . (1.68)

10Some argue that gravitational is intrinsically classical. However, there are clearly regimes in
which gravity is relevant at the quantum level, namely, in the singularities of black holes and
at the big-bang. Therefore, a quantum description of gravity seems to be mandatory in order
to understand these events.

11By “leading candidate” I mean the most popular candidate in literature. I completely acknow-
ledge the existence of other candidates for a quantum gravity theory, such as loop-quantum
gravity. However, up to my knowledge, string-theory is the only candidate which o�ers a
possible solution for the cosmological constant problem.
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We have used the brackets to indicate the zero-point expectation value.
We can rewrite the Einstein’s equations as

Rµ‹ ≠ 1
2Rgµ‹ + �Bgµ‹ = ŸTµ‹ + ŸÈTµ‹Í. (1.69)

Therefore, we can redefine the cosmological constant as

�eff © �B + Ÿflvac, (1.70)

which is the quantity we have access in observational cosmology.
In the case in which flvac is the only source of cosmological constant (as it should

be according to the standard model), the prediction for flvac has to be contributions
from zero-point energy of all possible fields in the Universe. The ideal situation
would be to have this prediction which is consistent with observations.

In our example, we are dealing with a classical field. The so-called “classical
cosmological constant problem” refers to the disagreement between the prediction
for the induced cosmological constant from the eletroweak (EW) and quantum
chromo dynamics (QCD) phase transitions (under the assumption of a mass for
the Higgs field) and the inferred value from cosmological observations. The inferred
value from cosmology is the order of the critical density today, fl� = ��flcrit. The
predicted value is (see Martin 2012 for details)

fl
EW

vac
ƒ ≠1055

flcrit (1.71)

and
fl

QCD

vac
ƒ 1045

flcrit. (1.72)

Even if this discrepancy is solved at the classical level, it rises also when we
estimate the contribution from the zero-point quantum fluctuations. The latter is
called “The quantum-mechanical cosmological constant problem”.

The quantum contribution from a generic quantized field is given by integral of
the zero-point energy of a quantum harmonic oscilator :

�eff = �B + Ÿ

(2fi)3

ˆ
dk

1
2Ê

2(k). (1.73)

The obvious problem with this contribution is that the integral blows-up in the
UV. In order to extract the finite part from it, we can use dimensional regularization,
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which leads to

fl
Q

vac
= m

4

64fi2 ln
A

m
2

µ2

B

, (1.74)

where m is the mass of the field and µ is an energy scale introduced in the
regularization to fix the dimensionality.

in order to obtain the right prediction, we need to take into account the contribu-
tions from all quantum fields in the Universe. The total contribution from zero-point
quantum fluctuations reads

fl
Q

vac
=

ÿ

i

ni

m
4
i

64fi
ln

A
m

2
i

µ2

B

. (1.75)

Taking nH = 1, mH ƒ 125GeV for the Higgs, nquarks = ≠4, mt ƒ 171.2GeV,
mb ƒ 4.2GeV, mc ƒ 1.27GeV, ms ƒ 0.104GeV, mµ ƒ 0.24GeV and md ƒ 0.48GeV
for the quarks, nleptons = 4, me ƒ 0.511MeV, mµ ƒ 105MeV, m· ƒ 1.77MeV, nz = 3,
mz ƒ 91GeV, nW ± = 3 and mW ± = 80GeV for the gauge bosons, neglecting the
neutrinos and taking µ ƒ 3 ◊ 10≠25GeV12 leads to

fl
Q

vac
ƒ ≠2 ◊ 108GeV4 ƒ ≠1055

flc. (1.76)

Therefore, the quantum contribution presents a discreapancy of ≥ 55 orders of
magnitude w.r.t. to the inferred vacum energy from cosmology. Clearly, none of
the choices made in this prediction will solve this problem, unless we consider new
physics. We are ignoring the interactions between the fields, which would worsen
the problem.

The cosmological constant problem is a multifaceted problem, which emerges
in both classical and quantum level. Hence, it is hard to imagine any avenue to
solve it, since even if we come up with a new theory of gravity which is capable of
correctly describe how quantum fluctuations interact with gravity suppressing the
quantum contribution, then we still have to explain the classical contribution. The
other way around is also true.

The observations of cosmic expansion seem to be in highly solid ground at the
moment this theses is being written and it seems unlikely that the solution would
12Here we follow Koksma et al. 2011, which argues that we should take µ ≥


EgravE“ , where

Egrav ƒ H0 ƒ 3.7◊10≠41GeV and E“ is the energy of photons corresponding to the wavelength
⁄ ƒ 500nm. The reasoning behind this is that we measure the cosmological constant through
the photons from supernovae, which couples to the expansion rate.
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come from new insights given by cosmological data.
However, it is safe to say that the standard model of particle physics is much

more well tested than the standard model of cosmology. Therefore, the current
and up-coming cosmological data carry a hope of finding new breakthroughs in
fundamental physics.

I believe that the cosmological constant problem is the most exciting problem in
our current knowledge of fundamental physics. Any advancement in the compre-
hension of this problem can deeply impact cosmology and particle physics.

By measuring how photons are deviated by underdense structures, we are mea-
suring how photons interact with gravitational potential in environments where
the vacuum energy is more relevant than dark matter compared to an average
environment in LSS. Therefore, the work developed in this thesis has as ultimate
motivation the contribution for the development of an observable which might be
sensitive to aspects of the cosmological constant problem.
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2 Void Phenomenology

2.1 Introduction

The void science goes back to the 70’s, where some authors detected large regions of
radius ƒ 20h

≠1Mpc almost empty of galaxies in the nearby galaxy distribution (e.g.
Gregory et al. 1978). But after the discovery of a void of radius ƒ 60h

≠1Mpc
in the Bootes constellation Kirshner et al. 1981, voids started to receive more
attention in literature and raised the question of whether this kind of structure
is a common feature of the large-scale structures or exceptions. Since then galaxy
surveys have shown that voids are so common that they are responsible for a large
fraction of the volume of the Universe and, therefore, is an essential feature of
large-scale structures. The existence of voids is a direct consequence of the initial
conditions and the gravitational collapse, which is the main driver of structure
formation. As matter accretes into overdense fluctuation given by initial conditions,
underdense fluctuations expand and occupy then larger and larger volumes.

Since voids represent a large fraction of the volume of the Universe, posses their
own substructures (e.g Jaber et al. 2023, Weygaert 2014), are emptier of
baryonic feedback and are less non-linear (e.g Paillas et al. 2017) than their
overdense counterparts, they emerge as a prolific laboratory for cosmological studies.

In the last two decades voids have been extensively used to constraint cosmological
parameters (e.g Sutter et al. 2012, Nico Hamaus, Cousinou et al. 2017),
as well as they have shown their potential as discriminators of modified gravity
models ( Voivodic, Lima, Llinares et David F Mota 2017a, Perico et al.
2019, Contarini, Marulli et al. 2021, Baker et al. 2018), the sum of neutrino
masses Massara, Villaescusa-Navarro et al. 2015 and dynamical dark energy
models Verza et al. 2019.

Despite the vast literature concerning voids, there are still challenges to overcome
in order to achieve the whole potential they provide. The main and most obvious
problem is the cosmic variance : since voids are large structures, spanning from
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few h
≠1Mpc up to ƒ 100h

≠1Mpc, we always have a modest number of them on
galaxy surveys (usually a few thousands) and, as a consequence, the precision of
the statistics we estimate from these samples is always largely limited by cosmic
variance. Unfortunately, the only solution for this problem is the mapping of the
largest possible volume of the universe by galaxy surveys, being then a fundamental
limitation. A possible way of easing this problem is the identification of the smallest
possible voids in the Dark Matter distribution, but it is also a huge problem since
voids are, by definition, emptier of galaxies, which means that the sparsity of
the galaxy field strongly a�ects the resulting void catalogue, which means that a
number of voids produced by a certain void-finder algorithm are simply useless
since they are the result of Poisson noise, specially the smaller ones. One possible
avenue to circumvent the latter problem is to use the weak-lensing signature of
voids, since this signature is sensitive to the total matter field and therefore allows
us to “see” this field without the limitation imposed by galaxy shot-noise. As we
aim to show in this work, we believe we have advancements in this program.

Another challenge concerns the most obvious statistics we can measure from
voids : the two-point cross-correlation function between voids and tracers (galaxies
or Dark Matter). See Massara et Sheth 2018 for some e�ort towards this goal.
Unlike the matter-matter auto-correlation, the void-matter cross-correlation is not
trivially predicted by standard perturbation theory (and its extensions such as
e�ective field theory of large scale structure). This happens because of a condition
we have to impose to one “end” of the correlation : to have fixed density given
by the void central density. This density is highly dependent on the void-finder
details. Moreover, the void-finder recipe, which is not unique, will highly a�ect
the shape of this cross-correlation and it is far from clear how to include this
dependence in an analytical prescription. One possible avenue to analytically model
this cross-correlation is to understand voids as any other tracer of large-scale
structure and simply write the void-matter cross-correlation as an expansion of
density field operators and corresponding bias parameters (see Desjacques et al.
2018 for a review in the context of other tracers) :

”v = F [�, �v] , (2.1)

where the functional F is an expansion of the potential �, the velocity potential
�v and their derivatives. Although there is no reason (up to the knowledge of the
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present author) to not do it also for voids, there is no work in literature pursuing
this.

Despite the theoretical and observational challenges, we believe this is an exciting
field to work on, where several plausible advancements are to be done. This theses
is mainly about small steps towards these advancements. In this chapter we aim
to summarize the phenomenology concerning voids which has been developed in
the literature in the last decades, as well as to present our contribution to void
science by presenting a new void finder algorithm and its application in the context
of void-lensing.

2.2 The excursion set for Halo formation

Voids can be seen as one of the building blocks of LSSs along with halos, by
thinking of walls and filaments as being composed by halos. The usefulness of
this way of understanding LSS is that we can actually model the LSSs from these
building blocks and come up with predictions for the statistics of it Cooray et al.
2002. Moreover, we can make predictions for the counts of such objects per bin
of mass, the so-called halo-mass/void-size function (or void abundance) Sheth
et Van De Weygaert 2004. These observables are of central importance in
modern cosmology, since they carry valuable cosmological information, in particular
regarding the primordial non-gaussianities.

We can roughly understand halos as being virialized objects which can be treated
as an e�ective particle (forming the LSSs) of a given mass and then count the
number of these objects per bin of mass - the halo mass function, as well as calculate
their cross-correlations. It is worth mention that the precise definition of what is a
halo depends on the halo finder algorithm and the parameters in the predictions
may vary depending on the algorithm’s peculiarities. The halo mass function plays
an important role in a variety of astrophysical and cosmological applications, such
as, for instance, galaxy formation Risa H Wechsler et Tinker 2018, Halo
Occupation Distribution models (HODs) Berlind et al. 2002 and the prediction
of linear halo bias Tinker et al. 2010.

In 1974 Press and Schechter Press et al. 1974 (PS) developed the first (up to
the knowledge of the present author) theory for the counts of what they called
“clumps” particles in a “gas” which are bounded after having virialized through
the spherical collapse. In the modern jargon these “clumps” are known as halos
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2 Void Phenomenology – 2.2 The excursion set for Halo formation

«of DM». After PS, several authors have further developed the theory. We aim to
cover from the PS theory until the so-called excursion set theory, first introduced
in the classical work of Bond et al. 1991.

In this section we review the basic theory for the halo mass function (or halo
abundance).

2.2.1 The spherical collapse

Before proceeding with the first approach to count halos, we shall briefly review
the basic assumption of the collapse of a spherical region with uniform density
embedded in an Einstein-de Sitter background.

Let’s consider then, that a spherical region has initial density contrast ”i and
radius Ri. Therefore, the enclosed mass is M = (4fi/3)R3

i
fl̄m,i(1 + �i), where

fl̄m,i = 3H
2
i
/8fiG is the background density.

Due to the Gauss law, the interior of the spherical region evolves independent of
the background and the equation of motion for its radius is

R̈ = ≠GM

R2 . (2.2)

By integrating the above equation once we get :

Ṙ
2 = 2GM

R
≠ E, (2.3)

where E is the integration constant, which is interpreted as the energy of the
system.

For �i << 1, we can use the linear growth of peculiar velocities Ṙ
pec

i
=

≠RiHi�i/3, where the growth rate is f = 1, since �m = 1. The total velocity is
the sum of the peculiar velocity and the Hubble flow :

Ṙi = Ṙ
pec

i
+ HiRi = HiRi(1 ≠ �i

3 ). (2.4)

That is, the sphere initially expands a little bit slower than the background. We
expect that this expansion will turn around at some point, as � grows to non-linear
values.
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By substituting M and Ṙ, the total energy is :

E = ≠5
3

(HiRi)2

2 �i (2.5)

and by setting Ṙ = 0 we get the turn around radius :

Rta = 3
5

A
1 + �i

�i

B

Ri. (2.6)

We can then write the cycloid solution of equation 2.2 as

R = Rta
2 (1 ≠ cos ◊), t = tta

fi
(◊ ≠ sin ◊), (2.7)

where ◊ œ [0, 2fi], with the turn around occurring at ◊ = fi.
This parametric solution implies that the radius will eventually collapse, but

actually this solution is only valid until the shell crossing. After this point the halo
will virialize.

We can write the evolution of the spherical overdensity for all t using the
parametric solutions 2.7 as :

1 + �i = fl(< R)
fl̄

= M/(4fi/3R
3)

fl̄
= fl̄m,i(1 + �i)R3

i

fl̄mR3 = 9
2

(◊ ≠ sin(◊))2

(1 ≠ cos ◊)3 (2.8)

By assuming that at ◊ = 2fi the virialization is complete, we can estimate the
linear density associated to the virialization as :

”cr © �L (tvir) = �i

3
tvir
ti

42/3
= 3

5

33
4

42/3
(◊vir ≠ sin ◊vir)2/3 = 3

5

33fi

2

42/3
ƒ 1.686.

(2.9)
That is, ”cr ƒ 1.686 is the initial overdensity linearly extrapolated at the time of

complete virialization. In the following, we are going to use it as a “clock” to define
a virialized object, i.e., it will be used as the linearly extrapolated overdensity of a
halo and thus the fraction of objects which are virialized will be the ones having
their initial overdensities above ”cr when linearly extrapolated.

This is a rough approximation, specially for smaller halos, which are subjected
to strong tidal forces and therefore might need a higher overdensity to virialize.
However, it should be a reasonable approximation for the most massive halos, which
are better approximated as being isolated spherical overdensities.
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2.2.2 The Press-Schechter argument

The Press-Schechter formalism, as well as the excursion set theory, have few basic
assumptions, namely :

• The smoothed density contrast ”(R) in a scale R follows a Gaussian distribu-
tion.

• The collapse of DM halos is approximately spherical

• Protohalo patches are characterized by a linearly extrapolated overdensity
equal to a certain threshold ”c (given by the spherical collapse).

The second conditions means that the PS theory will search for proto-halos in
the Initial Conditions (ICs), i.e in the initial Gaussian field. Regions in this ICs
which surpass the threshold ”c ƒ 1.686 (for Einstein-de Sitter) will be destined
to virialize into halos. Conversely, the DM inside halos at the present time can
be traced back into the ICs and therein this DM content will be inside a region
above the threshold. In the light of modern N-body simulations we know that these
assumptions are only valid for larger halo masses. The less massive halos are formed
by physical processes, such as tidal fields, for which the spherical collapse is not a
reasonable approximation Desjacques et al. 2018.

The PS can be summarized as the following. For su�cient small ”, which is a
reasonable assumption in the initial conditions, we can write its distribution as
being Gaussian :

�PS(”, S) = 1Ô
2fiS

e
≠”

2
/(2S)

, (2.10)

where

S(R) © ‡
2(R) =

e
”

2(x, R)
f

=
ˆ

d
3k

(2fi)3 PL(k)W 2
R

(k) (2.11)

is the field variance and ”(x, R) the density field smoothed at scale R by the window
function WR(k). We are going to adopt a top-hat window function for the sake of
simplicity. With this choice, the relation between the smoothing scale and the mass
is trivially M = fl̄m4/3fiR

3.
Therefore, for a certain smoothing scale, the volume fraction which will be part

of virialized objects is
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FPS(> M) =
ˆ Œ

”c

d” �PS(”, S(R)) = 1
2erfc

A
‹(R)Ô

2

B

, (2.12)

where ‹(R) = ”c/‡(R) and erfc(x) is the complementary error function. Notice
that we use the notation FP S(> M) to make explicit that this volume fraction
contain objects with mass equal or greater than M(R). It is easy to see why : if
a certain smoothed region has density contrast equal to the density threshold ”c,
then it will have a mass Mı, associated to a scale Rı, typically the size of the
corresponding smoothing scale. But it turns out that all the regions encompassing
mass > Mı (> Rı) will also be accounted.

By defining n̄h, such as

FP S(> M) = 1
fl̄m

ˆ Œ

M

dlnM
Õ
M

Õ
n̄h(M Õ) (2.13)

then we can convert 2.13 into the number density of halos per logarithmic mass
interval as

n̄h(M) © d
2
N̄h

dV d ln M
= fl̄mf(M) = ≠fl̄m

dF (> M)
dM

, (2.14)

where we have defined

f(M) © ≠dF (> M)
dM

. (2.15)

However, this result is not properly normalized, since

ˆ Œ

0
d ln MMn̄h(M) = ≠fl̄m

ˆ Œ

0
dM

dF

dM
= ≠fl̄m [pG(R = Œ) ≠ pG(R = 0)] = 1

2 fl̄m

(2.16)
should be the total density found in virialized objects of all masses, or the mean

density of the Universe, given the assumptions of the PS framework. This missing
mass is known as the cloud-in-cloud problem (as it will soon be clear why) and it was
realised in the original PS paper Press et al. 1974. However, they simply include
an ad hoc factor of 2 in their result, heuristically justifying with the argument
that this “fudge” factor of two is initially into underdensities and will eventually
collapse into halos. By introducing this factor of two, we finally obtain the PS halo
mass function
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n̄h,P S(M) = ≠2fl̄m

dF

dM
= fl̄

M

Û
2
fi

‹ exp
Ë
≠‹

2
/2

Èd ln ‡
≠1

d ln M
. (2.17)

where fl̄m is the average density of the Universe and we have converted radius to
mass. This relation is simply M = 4/3fiR

3
fl̄m for a top-hat smoothing function. In

another words, the number density of objects of a certain mass M can be predicted
through the fraction of mass belonging to future virialized objects, which is simply
given by the integral 2.12, with the correct normalization fl̄m/M . The result 2.17
can be extrapolated to any value of redshift by linearly extrapolating the density
threshold ”c(z) = ”c(0)/D(z), where D(z) is the linear growth function.

Notice that FP S(0) = 1/2, which means that in the limit in which the variance
‡(R) æ 0, the virialized objects account for only half of the Universe ! But clearly
in this limit all the mass of the Universe must be inside virialized objects. This
problem was realized by PS in their original paper and they basically correct this
mismatch by multiplying FP S by a factor of two. They give an heuristic justification
in the appendix, arguing that the missing mass is in the surrounding underdensities
which will eventually collapse onto the virialized objects. This problem is known as
the “cloud-in-cloud” problem. In the following we clarify the nature of this problem.

The solution to the cloud-in-cloud problem

The origin of the “fudge”factor of two in the PS formalism is the fact that in the
above derivation, we integrate the probability distribution at a fixed smoothing
scale R, but there is also the possibility that for some smoothing scale R

Õ
> R a

region which is below the threshold at R is now above the threshold. In other words,
there is a missing contribution from regions which are embedded in a larger region
which is above the threshold. The fact that the probability of having these regions
is exact the same probability of the accounted regions (those above the threshold at
smoothing scale R) becomes clear with the aid of the figure 2.1, reproduced from
Bond et al. 1991. In this figure we are using the language of excursion sets, which
will be further developed soon. In this language, the field points ”(R) perform a
random walk as a function of the pseudo-time variable S, starting from S = 0,
where ”(R) = 0. At the “instant” Sı, the PS prediction comes from the integral
of the Gaussian above the threshold. However, there are trajectories which have
already crossed the threshold at an earlier “instant”, but happen to be below the
threshold at Sı. Since the distribution is Gaussian at all S, the probability that a

61



2 Void Phenomenology – 2.2 The excursion set for Halo formation

trajectory is above the threshold is the same as the probability that a trajectory
has crossed the threshold earlier and is below the threshold at Sı. Therefore, the
missing factor of two is linked to trajectories which cross the threshold multiple
times.

One of the first attempts to predict the halo mass function including the fudge
factor was made by Peacock et al. 1990. In their work they explicitly include
the probability of having an underdense region embedded into a large overdense
region above the threshold :

FP H(> M) = pG (”(R) > ”c) +
ˆ

”c

≠Œ
d”

dpG

d”
pup (” (r > R) > ”c; ”) , (2.18)

where pG © FP S is the PS contribution and pup is the probability that a smoothed
overdensity in a scale r > R(‡(r) < ‡(R)) has already crossed the threshold,
weighted by the Gaussian distribution of ”(R). A bit of reflection makes clear
the parallel between eq. 2.18 and figure 2.1. The second term in eq 2.18 is the
probability that ”(R) has already crossed the threshold for larger smoothing scale
conditioned by the probability that ”(R) is Gaussian distributed and is below the
threshold at R ( or S(R) = ‡(R)). This is exactly what the reflected tail in figure
2.1 represents, since the probability that a trajectory has passed the threshold at
r > R and is found above or below the threshold at R is the same, the second term
in eq. 2.18 must be equal to the first. Notice that the probability pup is properly
normalized, since for R æ 0 (‡(R) æ Œ) the probability that any trajectory has
crossed the threshold goes to unity pup æ 1.

2.2.2.1 The excursion set - intuition

The basic assumption of the excursion set is the following

a generic point x belongs to a halo of size R only if R is the largest possible
scale at which the smoothed density contrast ”(R, x) centered at x crosses the
threshold ”c

Therefore, we are interested in obtaining the probability that a generic point
belongs to a virialized object of size R, which is the largest possible size above
the threshold. Once we are able to calculate this probability, we can say that the
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Figure 2.1 : Illustrative representation of walks which achieve �. The dark shaded
region shows that the fraction of trajectories that achieve � below
and above the threshold is the same, since for every trajectory which
pierce the threshold before � and reaches � above the threshold,
there is an equal probability that a reflected trajectory reaches �
below the threshold. Figure extracted from Bond et al. 1991.

number density of halos of size R(M) is proportional to this probability, so we can
write :

n̄h(M) Ã dPup(x œ ”(R(M)) > ”c)
dM

, (2.19)

where Pup denotes the probability that a generic point x belongs to a region which
is the largest one to reach ”c. It is important to notice that since S = ‡

2(R) is a
monotonically decreasing function of R(M) and therefore we can use interchangeably
the variables M , R and S. The conversion between R and M depends on the adopted
smoothing kernel WR, which reflects the halo density profile. See Bond et al. 1991
for a discussion about di�erent kernel choices.

Given this assumption, it is natural to think in a practical algorithm in which we
treat ”(R) as performing a random walk as a function of smoothing scale R, which
starts from R æ Œ and continuously decreases, or equivalently, starts from S = 0
and increases. We are going to make an idealised experiment using this algorithm
to illustrate the intuition behind the excursion set and then we will put this idea
in an analytical form.
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Figure 2.2 (extracted from Desjacques et al. 2018) shows an example of
realisations of ”(R, x), i.e the random walk of the smoothed density contrast inside
a sphere of radius R centered at two di�erent points of a simulation box. The
authors in ibid. chose two points presenting di�erent trends, but statistically a
generic point has no preferential direction (that is in the core of the cloud-in-cloud
problem), but rather the value of the density contrast in a scale R is simply a
Gaussian with increasing variance around zero. The algorithm will then work as
the following : take a point x and calculate the density contrast around it at the
largest possible R, then reduce R as continuously as possible and keep the scale
Rı at which ”(Rı) first touches the threshold ”c. Repeat the process for all points.
Then we will have a histogram of number of points that first crossed ”c at each
scale, which is exactly the distribution on the right-hand side of eq. 2.19. Then this
distribution can be converted into the number density of halos with corresponding
mass M(R) (which depends on the filter kernel).

Figure 2.2 : Extracted from Desjacques et al. 2018.

2.2.2.2 The excursion set - analytical solution for a Markovian walk

Since the excursion set models ”(R) as a random walking variable, the problem
reduces to a di�usion problem, for which we can write a Langevin equation :

d”(R)
dR

= Q(R), (2.20)
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where the noise term has covariance

ÈQ(R1)Q(R2)Í =
ˆ

d
3
k

(2fi)3 PL(k)dW (R1)
dR

dW (R2)
dR

(2.21)

and we have used eq. 2.11.
Notice, however that for a general choice of filter kernel W , this di�usion problem

has a noise term which is correlated throughout the random walk, i.e the value the
field will assume for a certain pseudo-time S depends on the history s < S, where
s is a dummy variable.

Therefore, to avoid this complication we can make a suitable choice of the filter
kernel for which the covariance 2.21 will be a Dirac delta noise. This choice is
clearly a sharp-k filter

W (R) = �H(1 ≠ kR), (2.22)

with �H being the Heaviside function. With this choice, the covariance 2.21
becomes

ÈQ (R1) Q (R2)Í = ≠ k
2
PL(k)
2fi2

-----
k= 1

R1

1
R

2
1
”D (R1 ≠ R2) (2.23)

and ”(R) can be understood as performing a Markovian walk, since in 2.23 the
di�erent steps S(R) are uncorrelated . That is, when we increment the pseudo-time
variable from s to s+ds, the di�erence d” = ”(s+ds)≠”(s) is Gaussian distributed
and, since the sum of independent Gaussian distributed variable is also a Gaussian
distributed variable, we are allowed to write the probability distribution function
of the walking field ”

Õ arrive at S with the value ”
Õ(S) = ” as :

pG(”)d” = 1Ô
2fiS

e
≠”

2
/2S

d” (2.24)

Then, following our discussion in the last section, we are interested in the
probability that a trajectory ”(S) first crosses the threshold ”c. A natural way
of doing that is to find the probability that a field ”(S) has never reached the
threshold for any s < S(R0), and acquires the value ” = ”(R0), �(”; S(R0)). Then,
the probability that a halo of mass greater than M(R0) will form due to a first
crossing trajectory is
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F (> M) = 1 ≠
ˆ

”c

≠Œ
d” �(”; S), (2.25)

which is exactly the probability we were looking for when we wrote 2.19. The mass
fraction inside halos of mass inside the bin [M, M + dM ] is then

f(M)dM = ≠dF (> M)
dM

dM, (2.26)

and we can finally convert into the number density of halos of mass inside the
bin [M, M + dM ] as

n̄h(M) = fl̄mf(M). (2.27)

Our goal is now to find the probability distribution �(”, S) given the assumption
that the filter kernel is k-sharp, allowing us to write the probability that the field
acquires the value ” at S as a Gaussian distribution. We could use the knowledge
that when a random variable ”(R) is described by a Langevin equation with a
Dirac delta noise, then its probability distribution is described by a Fokker-Planck
equation with appropriate boundary condition Bond et al. 1991 :

ˆ�
ˆS

= 1
2

ˆ
2�

ˆ”2 , (2.28)

where the appropriate boundary condition is �(”c, S) = 0. The solution of the FP
equation is the distribution we are looking for.

However, here we will adopt a more intuitive approach, which will gives this
distribution through simple observations as the following.

The distribution 2.24 is the probability that the field assumes any value of ” at
the “instant” S. To exclude trajectories that crossed the threshold at any s < S,
we can simply state that �(”, S) = 0 for ” > ”c. We also need to consider the
probability of ” to be below the threshold ”c after crossing the threshold at any
s < S. Since the probability distribution is Gaussian for all s and independent
amongst them, once the trajectory crosses the threshold, the probability that the
trajectory will reach a value of ”c + (”c ≠ ”) = 2”c ≠ ” above the threshold, is the
same that it will perform exactly the same trajectory, but reflected around the
horizontal line ” = ”c and reach ”c ≠ (”c ≠ ”). Hence, we can simply subtract the
probability pG(2”c ≠ ”), yielding
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�(”; S) =
Y
]

[

1Ô
2fiS

Ë
e

≠”
2
/2S ≠ e

≠(2”c≠”)2
/2S

È
(” < ”c)

0 (” Ø ”c)
. (2.29)

Finally, we can use eqs. 2.25 - 2.27 to estimate the halo mass function :

FES(> M) = 1 ≠
ˆ

”c

≠Œ
d” �(”; S) = erfc

C
”cÔ
2S

D

(2.30)

and

n̄h(ES)(M) = fl̄m

M
fES(‹)dln‡

≠1

dlnM , (2.31)

where we have defined the multiplicity function fES :

fES(‹) =
Û

2
fi

‹ exp
Ó
[≠‹

2
/2]

Ô
. (2.32)

Notice that this result is exactly equal the PS prediction 2.17, but naturally
corrected by the “fudge” factor of two. It is straightforward to check that eq. 2.37
with the given boundary condition leads to the same probability distribution 2.29.
Therefore, by applying the boundary condition of an absorbing barrier we are
excluding all the possible paths which cross the threshold at any s < S(R0). This
intuition will be useful in order to extend the formalism to voids.

2.2.2.3 Excursion-set with a linear diffusing barrier

It is worth noticing that this result is useful in order to give an intuition for
the excursion set, but it has several simplifications, namely, that the collapse is
spherical, that the void density profile is a sharp-k profile (which is unphysical),
that the random walk ”(S) is Markovian and that the threshold is a constant.
Despite all the simplifications, this result can qualitatively reproduce halo-mass
functions in N-body simulations, but there are discrepancies at the quantitative
level (see fig. 1 in the paper I of Maggiore et al. 2010). In order to improve the
agreement with N-body simulations, ibid. developed an extension of the excursion
set (as done in Bond et al. 1991) for non-Markovian deviations ( Maggiore
et al. 2010, paper I). This result still has discrepancies w.r.t N-body simulation
measurements. The reasons for these discrepancies are, beyond the already cited
ones, the fact that halos are not spherical in general, but rather triaxial and most

67



2 Void Phenomenology – 2.2 The excursion set for Halo formation

importantly, that there are arbitrary choices in the definition of what is a halo in
the void finder algorithm. The algorithm’s details will introduce variations in the
resulting mass function which is not captured by these predictions. Furthermore,
the density threshold is likely to not be constant for any environment. Consider,
for instance, an environment in which there are strong tidal forces (e.g a filament
nearby a massive cluster). A halo forming in this environment will be “stripped”
by the tidal field, which will work in the sense of preventing the halo formation.
Therefore, it is expected that in this environment, the density threshold must be
greater than the one in most “favorable” environments, such as in the center of a
long wave-length overdensity.

Motivated by these observations, the second paper in the series of Maggiore
et al. 2010 presented the extended excursion set, which introduces an extension of
the first crossing problem in the presence of a moving (di�using) threshold (barrier).
In the following we summarize their result applied to the case of a Markovian walk.

Consider a barrier which fluctuates around the static one B © ”c and has variance
which is linearly related to the variance of the field ” :

�B © È(B ≠ ÈBÍ)2Í =
Ò

DB‡(R). (2.33)

This Ansatz is reasonable since the halo formation is better described by a
spherical collapse in regions where ‡(R) is small, so we expect that the larger
deviations (in average) will occur in messy environments, scaling with ‡(R).

Therefore, the probability distribution which satisfies the Fokker-Planck equation
will be a joint probability distribution for ” and B, �(”, B, R), with B = ”c for
” = 0. Assuming that they perform independent walks, the Fokker-Planck equation
for the joint probability distribution reads

ˆ�
ˆS

= 1
2

ˆ
2�

ˆ”2 + DB

2
ˆ

2�
ˆB2 (2.34)

with the initial conditions B(S = 0) = ”c and ”(S = 0) = 0 and the boundary
condition � = 0 when ” = B, generalizing the boundary condition in the case of
static barrier. The solution produces the multiplicity function ( ibid., paper II)

f1LDB =
Û

2
fi

Ô
a‹ exp

Ó
≠a‹

2
/2

Ô
, (2.35)

where a = 1/(1 + DB) and the subscript 1LDB stands for one linear di�using
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barrier.

2.3 The Excursion set - The void abundance

In this section we extend the reasoning described in the last section for the case
of voids. We will call by “void abundance” the equivalent of halo mass function
for voids, i.e the mean number of voids in a bin of mass. It is also common in
literature the term “void radius function” or “void size function” to refer to the
same observable.

Despite not being virialized objects, the formation of voids can be modelled in
an analogous manner w.r.t the halo formation, but instead of being product of a
spherical collapse, voids are «ideally» the result of spherical expansion su�ered by
underdense regions in the initial conditions. Since the spherical collapse/expansion
models the evolution of idealised isolated overdensities/underdensities, it is expected
that any excursion set based on this assumption will be an approximation to the
real complex patterns of LSS.

On one hand, voids are more suitable for being described by this idealisation than
halos. Arguably, voids are formed where the gravitational forces are better described
by a divergent-like field, with less presence of tidal fields inducing curl forces which
source deviations from spherical collapse/expansion Icke 1984, specially near the
void center. Moreover, voids are way bigger than halos, with a typical radius of order
of ≥ 10h

≠1Mpc and hence their are less susceptible to the complications of smaller
scales. However, the approximation of isolated expansion is less reasonable than
isolated collapse. Despite this limitation, the spherical expansion is a reasonable
starting point for extending the excursion set to voids and gives us a general
intuition and a good qualitative description of the void abundance.

Figure 2.3 (extracted from Sheth et Van De Weygaert 2004) shows an
example of a spherical expansion su�ered by an initial underdense top-hat profile.
The time steps are a = 0.05, 0.1, 0.2 and 0.3. This exercise captures essential features
of void evolution : underdensities tend to expand (faster than the background), the
density in their interiors decreases with the expansion and a ridge is created at
the boundaries. The latter is the result of the faster expansion of inner shells w.r.t
outer shells, resulting in an eventual “shell crossing”. The inner shells are driven
by a larger «in absolute value» averaged density contrast, since their interior are
emptier, whereas outer shells are sourced by a smaller averaged density contrast,
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since it is an average of underdense/overdense inner/outer shells. This exercise
captures essential features which are present in void evolution.

Nevertheless, all the complications inherent to overdensities will also have their
contribution to void formation, since they are not isolated underdensities and their
boundaries will be shaped by the complicated overdense environments Weygaert
et Kampen 1993. Moreover, voids are far from evolving isolated from each other,
but they collide, merge into each other and form new voids from these processes, as
well as filaments and walls Dubinski et al. 1993. This merging of voids into each
other is known as the void-in-void problem. Furthermore, voids might also inhibit
longer wave length overdensities, which tends to collapse and erase these voids.
This process is known as the void-in-cloud problem. There is also the possibility
of halo formation inside voids, or cloud-in-void halos, but these halos will form
despite inhibiting voids and the larger void will not be a�ected by eventual halos
forming in their inside.

Figure 2.3 : The spherical expansion of an initial underdense isolated top-hat
profile in four time-steps, a = 0.05, 0.1, 0., 2 and 0.3. Figure extracted
from Sheth et Van De Weygaert 2004.

Therefore, in order to apply the excursion set reasoning for voids we need to worry
about the possibility of voids-in-clouds and voids-in-voids. Figure 2.4 (extracted
from Sheth et Van De Weygaert 2004) shows an example of each situation in
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the language of the excursion set. The left figures are the random walks performed by
the linearly extrapolated density contrast in an early time in an N-body simulation,
the middle and right plots show two successive time steps in the same simulation
at latter times w.r.t the middle ones. The two horizontal dashed lines labeled by
”c and ”v are, respectively, the threshold (linearly extrapolated) for halo and void
formation, where the value ”v = ≠2.81 comes from the spherical expansion of an
isolated void which has just passed through the shell-crossing, or has just acquired
the average internal density flv = 0.2fl̄m ( Suto et al. 1984). In the cloud-in-cloud
process the middle and right plots show how smaller overdensities merge to become
only one halo. In the cloud-in-void row, it is clear that halos form in despite being
inside underdensities and voids are not a�ected by clouds inside them. The last
two rows clearly illustrate that the void-in-void and void-in-cloud process are both
important to void formation. In the void-in-void row, existing voids delimited by
some filaments in the mid plot are erased in the right one. In the void-in-cloud
row, an existing underdensity in the mid plot is erased by the collapse of the larger
underdense region.
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Figure 2.4 : Extracted from Sheth et Van De Weygaert 2004.

This exercise shows that in order to apply the excursion set reasoning to voids,
it is necessary to consider the two barriers, ”c and ”v. The first will be important
to not count voids inside overdensities and the latter will be important to not
overcount voids inside voids. That is, the only voids we are going to count are those
which first cross ”v, without have never crossed ”c “before”.

Given that the excursion set prediction for voids is a two-barrier problem, the
Ansatz for the probability distribution of first crossing is not as trivial as the
one-barrier case. In order to derive the excursion set prediction we are going to
make usage of the Fokker-Planck equation and closely follow reference Voivodic,
Lima, Llinares et David F Mota 2017a, where is derived the void abundance
for two di�use barriers, with Markovian walks (sharp-k filter).

We begin by considering two di�using barriers :
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ÈBc(S)Í = ”c + —cS,

ÈBc(S)Bc (S Õ)Í = Dc min (S, S
Õ) ,

ÈBv(S)Í = ”v + —vS,

ÈBv(S)Bv (S Õ)Í = Dv min (S, S
Õ) ,

(2.36)

where Bc,v is the barrier associated to halos/voids, —c,v describes the increase/decrease
of the mean barrier along the walk and Dc is the di�usion coe�cient and express
the variance of the barrier in each S, as well as the correlation between di�erent
values of S. The min(S, S

Õ) comes from the choice of a k-sharp smoothing function,
or Markovian walk. This means that the field satisfies

È”(S)”(S Õ)Í = min(S, S
Õ), (2.37)

with È”(S)Í = 0. These two equations mean that the random walk is Gaussian
and Markovian. Since the field itself is Markovian, we expect that the barrier will
also be.

Notice also that in the case in which —c, v is positive, the barrier, which starts at
”c for S = 0 (R æ Œ), will have an expected value which scales with the variance.
This features is in accordance with our intuition that smaller scales will be subject
to more tidal fields which will act against the collapse and therefore a larger barrier
is required.

Since ”(S) is Markovian, the probability distribution �(”; S) satisfies a Fokker-
Planck equation

ˆ�
ˆS

= ˆ
2�

ˆ”2 , (2.38)

with the boundary conditions �(” = Bc, S) = �(” = Bv, S) = 0, which is the
“absorbing barrier” condition, equivalent to the Ansatz we gave in eq. 2.29. The
initial condition is given by

�(”, S = 0) = ”D(”), (2.39)

which means that all the mass of the Universe is contained either in halos or
voids, since
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ˆ Œ

≠Œ
d” �(”, S = 0) = 1. (2.40)

By introducing the variable Y (S) = Bv(S) ≠ ”(S) and making the assumption
that — © —c = —v

1, equation 2.37 can be rewritten as

ˆ�
ˆS

= ≠—
ˆ�
ˆY

+ 1 + D

2
ˆ

2�
ˆY 2 , (2.41)

where D © Dc + Dv. The solution is (see Voivodic, Lima, Llinares et David F
Mota 2017a for details) :

�(Y, S) = exp
C

—

1 + D

A

Y ≠ —S

2 ≠ ”v

BD

◊
Œÿ

n=1

2
”T

sin
A

nfi”v

”T

B

sin
3

nfi

”T

Y

4
exp

C

≠n
2
fi

2(1 + D)
2”

2
T

S

D

,

(2.42)

where ”T = |”v| + ”c.
The distribution �(Y, S) is the fraction of trajectories which does not cross

the “barrier” Y until the “time” S. Then we can proceed as before and calculate
the fraction of trajectories which cross the barrier in the interval [S, S + dS]
([M, M + dM ]) :

Fv(> M) = 1 ≠
ˆ 0

≠Œ
dY �(Y, S) (2.43)

,

fv(M) = ≠ˆFv(> M)
ˆS

dS

dM
. (2.44)

and finally

n̄v(M) = fl̄mfv(M). (2.45)

Putting everything together yields the number density per logarithm bin of
mass :

1It is not clear whether this simplification is reasonable or not. If — > 0, for instance, it means
that in smaller scales it is necessary larger overdensities to virialize and smaller underdensities
to form voids. This unreasonable assumption can be partially absorbed by the di�usion
coe�cient Dv though.
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n̄v = fl̄m

M
fv

dln‡
≠1

dlnM
, (2.46)

where the multiplicity function for voids is given by

fv = 2(1 + D) exp
C

≠ —
2
S

2(1 + D) + —”v

(1 + D)

D

◊
Œÿ

n=1

nfi

”
2
T

S sin
A

nfi”v

”T

B

exp
C

≠n
2
fi

2(1 + D)
2”

2
T

S

D

.

(2.47)

We are going to refer to this solution as 2LDB (Two Linear Di�using Barriers).
By taking the limit of two static barriers, i.e D = — = 0 we recover the simple case
of two static barriers (2SB), first derived by Sheth et Van De Weygaert 2004 :

f
2SB = 2

Œÿ

n=1

nfi

”
2
T

S sin
A

nfi”v

”T

B

exp
A

≠n
2
fi

2

2”
2
T

S

B

. (2.48)

It is usual to express the void abundance in terms of the radius instead of the
mass. By using flm/M = 1/V (r), then we can rewrite equation 4.20 as

d n̄v,L

d lnrL

= fv

V (rL)
d ln‡

≠1

d lnrL

, (2.49)

where we have redefined n̄v æ dn̄v/dlnr and the subscript L stands for linear
radius, i.e the radius . This is stressing that rL is the radius of regions defined as
void in the initial conditions, before the expansion and the eventual shell crossing
(in the spherical collapse model). At the shell crossing, the spherical collapse says
that the initial underdense region expanded by a factor of ƒ 1.7 (for instance,
Blumenthal et al. 1992).

By noticing that the factor fvV (r)dln‡
≠1

/dlnr is the fraction of voids in the
interval [lnr, lnr + dlnr], dF (r)/dlnr, then the cumulative fraction

F (> R) =
ˆ Œ

R

d lnrV (r) dn

d ln r
(2.50)

is, in general, larger than unity.
The cure for this problem was given by Jennings et al. 2013, where they relax

the assumption of conserving void number density, i.e dnL = dn, after the spherical
expansion. This is equivalent to relaxing the assumption of isolated spherical
expansion and therefore assuming that voids might merge into each other in the
process of expansion. Thus, instead of number density, the volume fraction, F (> R),
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is conserved, that is

V (r)dn = V (rL)dnL. (2.51)

By substituting the above equation into 2.50 it is easy to see that it will be
conserved. Therefore, the predicted abundance corrected by the volume fraction
conservation is given by

dn

dln r
= fv

V (r)
d‡

≠1

dln rL

, (2.52)

where we have used r = 1.7rL.
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3 Weak-Lensing

3.1 Overview

As light passes through mass in the Universe, its trajectory is deflected by gravita-
tional potentials. This e�ect, the gravitational lensing, is a trivial consequence of
GR, appreciated by Einstein immediately when he was developing it. Later, this
e�ect was one of the smoking-gun evidences of the validity of GR : the observation
of the deflection of a star due to the sun during a solar eclipse by Eddington (one
of those observations was made in Sobral, Ceará, in the north east of Brazil). We
have largely confirmed this e�ect since then.

One of the most magnificent observations of gravitational lensing (strong lensing
in this case) is the so-called Einstein ring, which is the stretching of galaxy images
around galaxy cluster, as seen in figure 3.1. Gravitational lensing was also important
as evidence of the existence of collisionless DM. Figure 3.2 shows, for instance, the
bullet-cluster. In this image it is possible to see the two merger galaxy clusters
(purple) in the foreground distorting the shapes of background galaxies in the
background (notice the existence of a few Einstein rings surrounding the cluster),
whereas most of the baryonic matter (detected in X-rays) is concentrated in between
the two clusters : the dragging in the baryonic matter was caused by the collision,
whereas DM passes through freely. This is a striking evidence for the existence of
DM.

These examples are cases where gradient of matter around clusters, or stars, cause
a drastic di�erence between bundles of light which passes through slight di�erent
impact parameters with respect to the object sourcing the gravitational field. This
strong gradient completely distorts the shapes of background galaxies and makes it
detectable at the level of individual galaxies, which generically characterizes the
strong lensing regime.

Unlike strong lensing, the weak lensing (WL, henceforth) regime is mainly due
to light being deflected by large scale structures (order of & h

≠1Mpc). These
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3 Weak-Lensing – 3.1 Overview

Figure 3.1 : Credits : NASA, ESA, the Hubble Heritage Team (STScI/AURA),
J. Blakeslee (NRC Herzberg Astrophysics Program, Dominion As-
trophysical Observatory), and H. Ford (JHU)

Figure 3.2 : Credits : X-ray : NASA/CXC/M.Markevitch et al. Optical :
NASA/STScI ; Magellan/U.Arizona/D.Clowe et al. Lensing Map :
NASA/STScI ; ESO WFI ; Magellan/U.Arizona/D.Clowe et al.

structures are usually classified as halos, filament, walls, and voids, which make
up the so-called cosmic web. The first detection of gravitational WL was made in
1990 by Tyson et al. 1990 as statistical tangent alignments around clusters. Since
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then, it has become one of the main observable to test GR and the �CDM model.
One reason why WL lensing is so interesting for probing LSS is because it is

sensitive to the total matter and, as a consequence, we circumvent one of the main
problem when performing cosmological analysis with luminous tracers : the galaxy
bias Desjacques et al. 2018. Moreover, WL can also be used as complementary
information to usual clustering analysis with luminous tracers and therefore shed
some light into the connection between the latter and dark matter.

As a limiting factor for WL, the fact that we always infer the projection of
foreground matter hides more detail information about the 3D density distribution.
As an attempt to partially overcome this limitation, we can take a tomographic bin
and assume that all the WL e�ect is due to only it, this is the so-called thin-lens
approximation.

In this chapter, we aim to briefly review the WL theory and describe how it will
be applied to the case in which we are interested in : the WL signature of cosmic
voids.

3.2 Light deflection

In this section we derive the most basic result in weak-lensing : how light rays are
deflected by gravitational potentials in the regime �/c

2 π 1.
In order to derive this result we will start from the relativistic form of Fermat’s

principle, which states that the path traveled by a light bundle between points A

and B will extremize the action

· =
ˆ

B

A

dl
n[x(l)]

c
, (3.1)

with n the analogous to the refraction index being the number which converts
the speed of light in the presence of a gravitational field from the speed of light
in the Minkowski space-time, n = c/c

Õ. Therefore, this equation is simply saying
that amongst all the possible light paths x̨[l] in the presence of a gravitational field
(encoded in n), the one choosen by nature will deliver the least amount of time.
Notice that we use “time” here in an imprecise way, since it has no meaning in
general relativity. We are simply computing an invariant quantity and saying that
the null geodesics will be an extremal of it in the curved space time with “refraction
index” n. The following calculation will also assume the limit in which A and B
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æ Œ. In this limit the result does not depend on the source and lens positions.
In order to compute n, we will use the weak-field approximation mentioned

earlier1 by writting the line element as

ds
2 = gµ‹dx

µdx
‹ =

A

1 + 2�
c2

B

c
2 dt

2 ≠
A

1 ≠ 2�
c2

B

(dx)2
. (3.2)

At the null geodesic we find

c
Õ = |dx|

dt
= c

ı̂ıÙ1 + 2�
c2

1 ≠ 2�
c2

¥ c

A

1 + 2�
c2

B

, (3.3)

where we used �/c
2 π 1. Therefore the refraction index is

n = c/c
Õ = 1

1 + 2�
c2

¥ 1 ≠ 2�
c2 . (3.4)

Since by convention � < 0 ,then the light speed in the presence of a faint
gravitational field � is less than the speed of light in the vacuum. Back to the
action 3.1, we can use the parameterisation

dl =
-----
dx̨

d⁄

----- d⁄. (3.5)

Therefore, we will find the trajectory x(⁄) such that

”

ˆ
⁄B

⁄A

d⁄n[x(⁄)]
-----
dx

d⁄

----- = 0, (3.6)

where the Lagrangian is

n[x(⁄)]
-----
dx

d⁄

----- © L(ẋ, x, ⁄) (3.7)

and ˙ denotes derivatives w.r.t the a�ne parameter ⁄.
Then, plugging this Lagrangian into the Euler-Lagrange equation

d
d⁄

ˆL

ˆẋ
≠ ˆL

ˆx
= 0 (3.8)

we have

1In this derivation we also assume that the lens is small compared to the system observer,
lens and source, in such a way that we can consider the lens as a point source along the
line-of-sigth.
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ˆL

ˆx
= |ẋ|Òn, (3.9)

where we dropped second order derivatives and

ˆL

ˆẋ
= n

ˆ

ˆẋ

ËÔ
ẋ2

È
= n

ẋ

|ẋ| . (3.10)

Since ẋ is the vector tangent to the light’s trajectory, we can normalize this
vector by a suitable choice of ⁄ and then define the normalized tangent vector
e © ẋ. Thus, plugging eqs. 3.9 and 3.10 into 3.8, we get

d
d⁄

(ne) ≠ Òn = 0. (3.11)

The second term in the derivative d/d⁄(ne) can be written as

d

d⁄
n = e(Òn · e), (3.12)

by noticing that dn/d⁄ = (dn[x]/dx)ẋ.
Finally we get

nė = Òn ≠ e(Òn · e), (3.13)

where the second term in the right-hand side is the component of the gradient
perpendicular to the light path :

ė = Ò‹n

n
= Ò‹ ln(n). (3.14)

Now using the result we derived earlier and that �/c
2 π 1, we get

ė = ≠ 2
c2 Ò�(x̨(⁄)). (3.15)

Finally, the total absolute deflection of the light path is

–̂ = 2
c2

ˆ Œ

≠Œ
Ò‹�(x̨(⁄))d⁄. (3.16)

This result shows that the photon going through the geodesics will have its
observed position altered by a cumulative e�ect, that given our assumptions, is
simply given by integrating the gradient of the potential along its path.

Let’s consider a point mass. Then the gradient � of its potential is
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Ò‹� = ˆx�x̂ + ˆy�ŷ = GM/r
3(xx̂ + yŷ). (3.17)

Then, by defining the impact parameter b =
Ô

x2 + y2 and integrating the above
gradient in the interval [≠Œ, Œ] along the z direction :

–̂ = 2GM

c2

ˆ +Œ

≠Œ

dz

(b2 + z2)3/2 = 4GM

c2b
(cos(„)x̂ + sin(„)ŷ) . (3.18)

There are two important things to notice about this result : (i) the deviation angle
–̂ is linear in M , which means that in the case we have a set of N lenses in a plane,
we can find the total deviation angle as –(M1 + ... + MN ) = –(M1) + ... + –(MN ).
(ii) In the Newtonian case, the solution for the equation of motion of a photon
under the influence of a point mass potential, r̈ = GM/r

3r, is 2GM/c
2
b and di�ers

from our solution in the context of GR by a factor of two. This factor is directly
coming from the spatial curvature in the metric 3.2, i.e., GR says that the e�ect of
the scalar spatial curvature (small perturbations from Minkowski) is to double the
e�ect of the gravitational potential in the photon’s momentum.

Given that the matter distribution acting as a lens has negligible line-of-sight
dimension compared to the other distances involved in the problem, we can express
the deviation of a light bundle –̂(r‹) (which crosses the lens plane at r‹) in terms
of the surface density

–̂(r‹) = 4GM

c2

ˆ
R2

d
2
r

Õ
‹

|r‹ ≠ rÕ
‹|2 (r‹ ≠ rÕ

‹)�(rÕ
‹), (3.19)

where the surface density is defined as

�(r‹) =
ˆ Œ

≠Œ
d‰fl(r‹, ‰), (3.20)

with fl(r‹, ‰) being the density profile of the lens, e.g. the number density of DM
particles around a void multiplied by the mass of each DM particle.

Therefore, given our assumptions, the deviation angle will be completely deter-
mined by the density profile of the lensing structure.
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3.2.1 The Lens equation

Now that we have the angle that a light bundle will su�er due to some structure, we
can relate the latter to the observed and original angular positions of light-bundles.

Figure 3.3 : Illustration of a generic lensing setup. The origin of the coordinate
system we use through out this section is defined at the intersection
between the lens and source planes and the line connecting the
observer and the source.

Figure 3.3 shows a generic observer-lens-source system. The light is emitted
with an impact parameter ◊true © ◊true‰ and comoving distance ‰S © ‰(zS) and
is deviated by a lens at comoving distance ‰

Õ, resulting in an observed angular
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position ◊obs © ◊obs‰. Then, by simply relating the observed and true positions2,
the relation between the emitted and observed angular positions is

◊obs = �◊ + ◊true, (3.21)

where, using the result from the previous section,

�◊ =
ˆ

‰S

0
d‰

Õ (‰S ≠ ‰
Õ)

‰S

d–̂ = 2
c2

ˆ
‰S

0
d‰

Õ (‰S ≠ ‰
Õ)

‰S

Ò‹�. (3.22)

The above equation can be interpreted as each lens at comoving distance ‰
Õ is

adding a small deviation d◊ = (‰S ≠ ‰
Õ)/‰S d–̂ to the true source angular position.

Then, the total shift in the true position is given by the integral along the whole
path from the observer to the source.

Equation 3.21 is called the “lens equation” and is the starting point for the
fundamental results of weak-lensing theory. Indeed, this equation encapsulates the
GR e�ect in light rays through –̂ and the geometry of the system. We derived
this equation from a very simple geometric argument and under the small angle
approximation, which is almost always the case in cosmology, but it is simply the
geodesic equation of a photon going from the source plane to the observer.

In WL we are interested in quantifying the distortion and change of an image
shape of a source galaxy due to the foreground gravitational potential. Of course,
the image has to have a non-negligible apparent size. The treatment is largely
facilitated in the case in which the apparent image size of source galaxies are small
compared to the changes in the density profile of the lensing structure. In other
words, we can expand the mapping between positions in the lens and source planes
and use only the first order term. The distortion in the source image is then encoded
in the Jacobian

ˆ◊true,i

ˆxj

= ”ij ≠ ˆ�◊i

ˆxj

, (3.23)

where the derivatives are taken with respect to a coordinate system defined in the
lens plane.

It is convenient to define the lensing potential as

�◊i = ˆ

ˆxi

Â, (3.24)

2notice that we are assuming a flat Universe
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Â = 2
c2

ˆ
‰S

0
d‰

Õ (‰S ≠ ‰
Õ)

‰S‰Õ �(◊‰
Õ
, ‰

Õ). (3.25)

In the above definition we used that ˆ◊‰
Õ
/ˆxi = ‰

Õ.
We can define then the distortion tensor Aij as :

Aij © ”ij ≠ ˆ
2
Â

ˆxiˆxj

, (3.26)

which can be parameterized as

A =
Q

a1 ≠ Ÿ ≠ “1 ≠“2

≠“2 1 ≠ Ÿ + “1

R

b . (3.27)

In this parameterization, Ÿ is the convergence and it is associated with an overall
increase or decrease of the image size, whereas “1,2 are the shear components and
are associated with elongations along the axes x1 and x2. Therefore, in the simplest
case in which the source image is a circle, the convergence will be associated with a
change in the circle size and the shear components to the eccentricity of an ellipse.

Notice that A has an identity component, which is the limit of no gravitational
potential.

By definition, the shear components and the convergence are given by “1 =
1/2(ˆ1ˆ1 ≠ ˆ2ˆ2)Â, “2 = ˆ1ˆ2Â and Ÿ = 1/2(ˆ2

1 + ˆ
2
2)Â. The shear components are

often expressed as a complex number :

“ = “1 + i“2 = |“|e2„i
. (3.28)

Thus, “ can be understood as a spin-2 field, i.e. a rotation of fi will turn it into
itself.

The convergence is simply the projection of the Poisson equation along the
line-of-sight, weighted by a geometric factor :

Ÿ(◊) = 1
c2

ˆ
‰S

0
d‰

Õ (‰S ≠ ‰
Õ)‰Õ

‰S

Ò2�(◊‰
Õ
, ‰

Õ). (3.29)

The geometrical weight can be absorbed into the definition of the critical surface
density :

�c = c
2

4fiG

‰S

‰(‰S ≠ ‰) . (3.30)
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Notice that the inverse of the critical surface density is weighing the Poisson
equation, and �≠1

c
is a parabola in ‰, with maximum at ‰S/2, i.e. the lens positions

which maximise the distortions in source galaxy shapes, are the ones about half-way
between the observer and the source.

By introducing this definition and taking the right hand side of the Poisson
equation, we can write the convergence as

Ÿ(◊) =
ˆ

‰S

0
d‰�≠1

c
a

2
fl̄m(a)”(◊‰, ‰) = 3H

2
0 �(0)

m

8fiG

ˆ
‰S

0
d‰

”(◊‰, ‰)
a(‰)�c

. (3.31)

By defining the surface density contrast as

�(◊) = 3H
2
0 �(0)

m

8fiG

ˆ
‰S

0
d‰

”(◊‰, ‰)
a(‰) (3.32)

and assuming that �c is approximately a constant over the values of ‰ where ”(◊‰)
is non-zero, we can express the convergence as

Ÿ(◊) = �(◊)
�c

. (3.33)

The assumption that we can take �c outside the integral, allows us to relate a
quantity which is only dependent on the local density field, �, with a weak-lensing
observable, Ÿ.

In Fig. 3.4 an elliptical galaxy is lensing source galaxies in the background,
creating visible Einstein rings. A weak version of this e�ect will happen in weak-
lensing in cosmology.

One of the usefulness of weak-lensing in cosmology is to infer the density profile
of clusters and voids. To make this kind of inference we always work with averaged
profiles, which are isotropic. Therefore, the e�ect on source galaxy shapes will be a
stretch either on the direction perpendicular or radial to the line connecting the
cluster and the source galaxy positions.

In these cases, “1 and “2 are not necessarily aligned with the tangential or radial
direction. For instance, in the case that the line connecting the cluster to the source
galaxy position in the lens place is parallel to the ◊x≠axis, then non-zero “1 means
ellipticity aligned either with the ◊x≠axis (negative “1) or with the ◊y≠axis (positive
“1), whereas ellipticity aligned with the direction rotated by 45¶ w.r.t. ◊x≠axis
means non-zero “2. However, for a generic source galaxy position, the ellipticity
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will be described by a combination of “1 and “2, even if the actual ellipticity is
aligned with the tangential direction.

Therefore, it is more useful to express the shear in a basis which has one of
the axis always aligned with the tangential direction around a certain structure.
This problem is exactly analogous to the polarization of the CMB, in which the
polarization tensor is decomposed into the E and B modes.

Figure 3.4 : Strong lensing around a galaxy from the Hubble telescope

Let’s take the traceless part of the distortion tensor :

A
T

ij
=

Q

a“1 “2

“2 ≠“1

R

b . (3.34)

This is a tensor which has two independent components. We can then decompose
it in terms of a scalar component plus a transverse-traceless tensor, as we did for
the metric perturbations. Thus, A

T

ij
is written as

A
T

ij
= 2

A
◊i◊j

◊2 ≠ 1
2”ij

B

“t + A
T T

ij
, (3.35)

where we introduced the scalar “perturbation” (in analogy to scalar metric per-
turbations) “t and A

T T

ij
is a transverse-traceless tensor. It is easy to see that the

scalar component is extracted as
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“t = ◊i◊j

◊2 A
T

ij
. (3.36)

By writing a position in the ◊x≠◊y plane in polar coordinates ◊ = |◊|(cos(„), sin(„)),

“t = (cos2(„) ≠ sin2(„))“1 + 2 sin(„) cos(„)“2 = cos(2„)“1 + sin(2„)“2, (3.37)

which can be written in short-hand as

“t = R[|“|e≠2i„]. (3.38)

The transverse-traceless components are :

A
TT
12 = A

T
12 ≠ 2◊1◊2

◊2 “t

= “2 ≠ sin(2„) (cos(2„)“1) + sin(2„)“2)
=

1
1 ≠ sin2(2„)

2
“2 ≠ sin(2„) cos(2„)“1

= cos(2„)“◊,

(3.39)

where we defined

“◊ = cos(2„)“2 ≠ sin(2„)“1, (3.40)

which can be written as :

“◊ = |“|e≠2i„
. (3.41)

It is straightforward to show that the remaining components of A
T T are also written

in terms of “◊.
Finally, we can write the transverse part of the distortion matrix in terms of “t

and “◊ as :

A
T

ij
=

Q

a cos 2„ sin 2„

sin 2„ ≠ cos 2„

R

b (≠“t) +
Q

a ≠ sin 2„ cos 2„

cos 2„ sin 2„

R

b (≠“◊) (3.42)

and for convenience we have redefined “t,◊ æ ≠“t,◊. For instance, if „ = fi/2.,
then

88



3 Weak-Lensing – 3.2 Light deflection

A
T

ij
=

Q

a “t “◊

“◊ ≠“t

R

b , (3.43)

which means that “t > 0 is associated with distortions along the ◊x direction,
whereas “t < 0 is associated with distortions along the ◊y direction. For any „,
“t > 0 will always be associated with distortions along the direction tangential to
the line connecting the cluster and the source, whereas “t < 0 is associated with
distortions along the radial direction. The reason why this decomposition is so
useful, is because isotropic structures only induce non-zero tangential shear, “t, and
never induce non-zero cross-shear, “◊. These components are often called E-mode
(“t) and B-mode (“◊), in analogy to the E-B decomposition of the polarization
tensor.

In a real observation, we choose a basis and measure the “1,2 components with
respect to this basis. We can then convert these measured numbers in “t,◊ through
equations 3.38 and 3.41.

On the other hand, we would like to have a prediction for the averaged tangential
shear around a structure in terms of the expected profile of this structure. This
prediction requires a relation between the tangential shear and the convergence,
which can be achieved as follows.

Let’s apply the Gauss theorem in 2D to the gradient of the gravitational potential
over a circle :

˛
ˆS

dl · ÒÂ(◊, „) =
˛

S

dSÒ2
Â(◊, „). (3.44)

By definition, Ò2
Â = 2Ÿ, so we can rewrite the above equation as

◊

ˆ 2fi

0
d„

ˆÂ

ˆ◊
=
ˆ 2fi

0
d„

ˆ
◊

0
d◊

Õ
◊

Õ2Ÿ, (3.45)

where we used that dl = n̂|◊|, with n̂ = (cos(„), sin(„)) the unitary vector
pointing in the radial direction. Notice that the dot product between the line
element and the gradient of Â selects the component of the gradient parallel do
the radial direction.

By applying the derivative w.r.t. ◊ in both sides :

ˆÈÂÍ(◊)
ˆ◊

+ ◊
ˆ

2ÈÂÍ(◊)
ˆ◊2 = 2◊ÈŸÍ(◊), (3.46)
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where we introduced the brackets indicating average along the circle

ÈfÍ(◊) = 1
2fi

ˆ 2fi

0
d„f(„, ◊), (3.47)

and used the Leibniz rule to integrate the right hand side.
Now we have to use a bit of intuition to deal with the second term in the left

hand side. The second derivative of ÈÂÍ is the Laplacian along the radial direction
of a quantity which is averaged over „, i.e., this result must be independent of our
coordinate choice. This observation motivates the Ansatz that this term must be
written in terms of “t. Indeed the distortion tensor is the identity plus the second
derivative of Â in the directions i, j (Eq. 4.4). If we take the definition of “t and
test the cases, „ = nfi/2, we will always find the distortion matrix if we take

ˆ
2ÈÂÍ
ˆ◊2 = ÈŸÍ ≠ È“tÍ. (3.48)

Thus, by using the above Ansatz and replacing the first term equation 3.47 by
equation 3.45 :

2
◊

ˆ
◊

0
d◊

Õ
◊

ÕÈŸ(◊Õ)Í + ◊(ÈŸÍ(◊) ≠ È“tÍ(◊)) = 2◊ÈŸÍ(◊)) (3.49)

and we finally get to the relation between the averaged tangential shear and
convergence around a structure :

È“tÍ(◊) = ÈŸÍ(< ◊) ≠ ÈŸÍ(◊), (3.50)

where we defined the averaged convergence inside a circle of radius ◊ :

ÈŸÍ(< ◊) = 2
◊2

ˆ
◊

0
d◊

Õ
◊

ÕÈŸ(◊Õ)Í. (3.51)

This result is a relation between a single quantity that parameterizes the net
e�ect of a structure in the shapes of source galaxies and the projection of the total
matter density field along the line-of-sight. In one hand we can take the observed
“1,2 from observed photometric galaxies, convert them in “t and them compare it
to the total projection of the density field, i.e., it allows to “see” the density profile
of structures directly, without the need for converting between the observed density
field through luminous tracers and the one we can calculate from E�ective field
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theory of large-scale structure, N-body simulations, or another analytical/numerical
method.

Of course that life is not too simple and we have some immediate issues with this
inference. The most obvious one is that we are not really inferring the projected
density field, but rather the latter weighted by �≠1

c
, which depends on the source

distribution. Furthermore, there are observational issues inherent to weak-lensing,
such as errors in the estimation of photometric galaxy shapes.

Regarding the first problem, there is way of overcoming it. Let’s remind that the
convergence can be approximated by �/�c is the case that �c varies very slowly
over the region along the line-of-sight where the (averaged) density field is non-zero.
Using this approximation, we can rewrite the tangential shear as

È“tÍ(◊) = �≠1
c

(�(< ◊) ≠ �(◊)) (3.52)

and we can define the Excess Surface Mass Density (ESMD) :

��(◊) = �(< ◊) ≠ �(◊) = �cÈ“tÍ(◊). (3.53)

In other words, by observing the distortion caused by a targeted structure on
the shapes of source galaxies, we can infer the projected density field around this
structure.

Excess Surface Mass Density Estimator

As we have to find the optimal weighing to estimate the power spectrum, as was
done by FKP, we also need to find the optimal weights to estimate �� from
the given shear estimates. Here we reproduce the estimator first introduced in
Sheldon et al. 2004 and that will be latter used to estimate �� from simulated
shear estimates.

In the weak-lensing regime, the galaxy ellipticity can be written as :

‘ = R2“t + ‘
int

, (3.54)

where R is the responsivity function and ‘
int is the intrinsic shape. The responsivity

function describes how susceptible a galaxy is to an induced shear by foreground
structures. It is easy to imagine why this might vary from galaxy to galaxy : the
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induced shear is merely a consequence of light-rays from di�erent points of the
galaxy image having di�erent impact parameters and therefore their photons path’s
being subjected to di�erent potential gradient. Having this intuition in mind, clearly
the responsivity might depend on the intrinsic shape and size of the source galaxy.

The error in the estimated shear must be then

4‡(“t) = ‡(‘) + ‡(‘int), (3.55)

where ‡(‘) is the error in the estimation of galaxy shapes from photometric images
and ‡(‘int) = È(‘int)2Í is the variance in the intrinsic shape of galaxies.

We can write the logarithm likelihood for �� as

log L(��) =
ÿ

j,i

Q

ca≠1
2

S

U“
ij

t ≠ �≠1
crit,ji��

‡

1
“

ij

t

2

T

V
2R

db , (3.56)

where j, i runs, respectively, over the lenses and sources and “
ij

t is the shear induced
by the lens j into the source i.

The maximum likelihood is given by

�� =
qNS

i=0
qNL

j=0 wij�crit,ij“
ij

t

qNS
i=0

qNL
j=0 wij

, (3.57)

where wij = ‡
≠2
ij

and ‡ij = ‡(“ij

t )�crit,ij.
Therefore, this estimator is basically taking the induced shear for each pair and

attributing an e�ective weight for it, given by �≠1
crit,ij

= 4fiG/c
2(‰2

L
/‰S ≠ ‰L), a

parabola with maximum at ‰S/2.

3.2.2 Ellipticities and shear

When averaging millions or billions of source galaxy shapes, we expect that the
resulting shape will be circular, so we can say that any deviation from a circle,
or ellipticity, will be due to gravitational lensing (neglecting intrinsic alignments).
However, we have not defined at exactly we mean by ellipticity and how it relates
to the shear.

Let’s take, as before, in the lens plane and center the image at the origin. Then
we can calculate the quadrupole moment of the image as :
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Qij © È◊i◊jÍIobs
© 1

F

ˆ
d

2
◊Iobs(◊)◊i◊j, (3.58)

where Iobs(◊) is the energy incident on a detector per solid angle, per unit of area
and time, per unit of frequency, that is

dE = Id�dA‹dtd‹. (3.59)

The backet notation makes clear the meaning of the quadrupole : it is an average
over the image weighted by the intensity. The normalisation constant F is

F =
ˆ

d
2
◊Iobs(◊), (3.60)

or the total flux of the image. Notice that the dimensions of I(◊) guarantees that
the quadrupole moment is properly normalised.

Since Qij is a 2 ◊ 2 symmetric tensor and, therefore, it has three independent
components, we can write it as :

Qij = 1
2Q

Q

a1 + ‘1 ‘2

‘2 1 ≠ ‘1

R

b , (3.61)

where Q is the trace Q = Tr[Qij] and ‘1,2 are the ellipticities. Since Q is multiplying
all the components, it is associated with increase or decrease of the image size,
whereas the ellipticities are distortions in the ◊x, ◊y (‘1) or ◊x = ◊y (‘2) directions,
i.e., a circular image implies ‘1 = ‘2 = 0.

Now we would like to link these ellipticities, which can be directly measured, with
the shear, for which we know how to calculate through the gravitational potential.

Since we know the Jacobian of the transformation between positions in the source
plane and the lens plane, which depends on the shear and convergence, we just have
to write down ‘1,2 in terms of the integral 3.58 and do the calculation. Therefore,
following our parameterization in 3.61, we can write the ellipticities as

‘1 = Qxx ≠ Qyy

Qxx + Qyy

(3.62)

and
‘2 = 2Qxy

Qxx + Qyy

, (3.63)
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where we have used a simplified notation x © ◊x, y © ◊y, but keep in mind that
these are the positions in the lens plane.

Plugging the integral 3.58 into 3.62 :

‘1 =
´

d
2
◊Iobs(◊) [◊x◊x ≠ ◊y◊y]´

d2◊Iobs(◊) [◊x◊x + ◊y◊y] . (3.64)

Now, by energy conservation, i.e., because lensing does not create photons, but
simply change their path3, Itrue(◊true) = Iobs(◊obs), where ◊true is the position in
the source plane and we reused the subscript obs for quantities in the lens plane.
Using that ◊i = A

≠1
ij

◊
S

j
and d

2
◊ = |A≠1|d2

◊
S, equation 3.64 is rewritten as

‘1 =
´

d
2
◊

S |A≠1|
Ë
(A≠1)

xi
(A≠1)

xj
≠ (A≠1)

yi
(A≠1)

yj

È
Itrue

1
◊

S

2
◊

S

i
◊

S

j´
d2◊S |A≠1|

Ë
(A≠1)

xi
(A≠1)

xj
+ (A≠1)

yi
(A≠1)

yj

È
Itrue (◊S) ◊

S

i
◊

S

j

. (3.65)

We can pull all the matrices A outside the integral, since it depends only on variables
in the lens plane. To perform the integrals, we use that the galaxy shape in the
source plane is a circle. Since in all our calculations we are always using averaged
shapes over many galaxies, this is a reasonable assumption. As a consequence of
circular shape, the integrals when i ”= j will be zero and we will be left with ”ij.
After contracting the indices we get :

‘1 =

5
(A≠1

xx
)2 ≠

1
A

≠1
yy

226

5
(A≠1

xx
)2 + 2

1
A≠1

xy

22
+

1
A≠1

yy

226 . (3.66)

Finally, taking the inverse of A,

‘1 = (1 ≠ Ÿ + “1)2 ≠ (1 ≠ Ÿ ≠ “1)2

(1 ≠ Ÿ + “1)2 + 2“
2
2 + (1 ≠ Ÿ ≠ “1)2

= 4“1(1 ≠ Ÿ)
2(1 ≠ Ÿ)2 + 2“

2
1 + 2“

2
2

. (3.67)

Since we are in the weak-lensing regime (Ÿ, “1,2 π 1), all second order quantities
can be dropped, yielding

3Photons might loose energy through gravitational redshift, which we neglect. The point here is
that photons are not created or destroyed and all of the ones which left the source will reach
the telescope.
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‘1 ƒ 2“1 (3.68)

and an analogous calculation will lead to

‘2 ƒ 2“2. (3.69)

This result shows that the observed ellipticities are direct measurements of the
projected density field of total matter.

In this derivation, we have used the Jacobian of the transformation of areas
between the lens and source planes,

µ © |A≠1| = 1
(1 ≠ Ÿ)2 ≠ “

2
1 ≠ “

2
2
, (3.70)

which is the magnification and describes the change in the flux, which is equivalent
to the change in the image size, since the number of photons is conserved. By
dropping second order quantities,

µ ƒ 1
1 ≠ 2Ÿ

ƒ 1 + 2Ÿ. (3.71)

By looking to equation 3.31, we see that if ” > 0, the images sizes are magnified.
However, if ” < 0, which usually occurs in voids, the image size su�ers a decrease
in size, or demagnification.

3.2.3 Theoretical challenges

Despite being a promising observable and having increasing attention in literature
due to its potential, weak-lensing science also has clear limitations and/or challenges
to be overcome over the next years.

Projection

The most obvious unavoidable limitation is the fact that weak-lensing is only
capable of recovering 2D information. We can partially overcome this limitation
by taking tomographic bins, which is informally known as to recovering “2.5D”
information. It has been shown that a suitable tomographic binning is capable of
enhancing the precision on (�m, ‡8) measurements by a factor of 5 Yuan et al.
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2019 in comparison to the 2D peak analysis.

Intrinsic alignments

The next “leading order” limitation is related to one of the most important assump-
tions in all the results we have derived : the assumption that galaxies might have
intrinsic shapes, but that these shapes are randomly oriented. It is well known that
this assumption is not necessarily true. Galaxy shapes are subjected to tidal forces
and tend to align in preferentially in the direction of tidal field. Near to massive
halos, galaxies tend to have shapes aligned with the radial direction, whereas near
to filaments, galaxy shapes tend to align in the direction of the filament. Intuitively
one would think that this e�ect is important only on small scales, but it has
been shown that the correlations between intrinsic shapes of galaxies can span up
to ƒ 100h

≠1Mpc Delgado et al. 2023. It is well established that ignoring the
intrinsic-intrinsic correlations can lead to significant errors in weak-lensing analysis
Kirk et al. 2015.

Up to date, and up to the knowledge of the present author, there are not studies
on the impact of intrinsic alignments on void-lensing. Intuitively, it is expected
to have less impact on void-lensing analysis since we are correlating larger scales
compared to halos. However, the void-lensing signal is also fainter and hence any
systematic e�ect will have more importance.

Baryonic effects

The weak-lensing signal is sensitive to the total matter field, since photons couples to
dark matter and baryons. However, when making analytical or numerical predictions,
we only account for the dark-matter field. It is known that the halo profile is highly
a�ected by baryons Duffy et al. 2010, specially on small scales. Recent weak-
lensing analysis in real data have avoided this problem by applying a cuto� at
some scale. However, if we aim to extract the whole potential from weak-lensing,
we have to model baryonic e�ects.

For void-lensing we expect that this e�ect will be minor for two reasons : we are
probling larger scales and baryons have a marginal e�ect on void profiles.
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Non-linearities

Weak-lensing cosmological analysis use to apply a scale cut to avoid the non-linear
modelling Abbott et al. 2022, losing then constraining power from these scales,
what is expect to be non-negligible due to less cosmic variance. The account of
non-linearities on weak-lensing is arguably more challenging that 3D tracer-tracer
clustering since all scales will be important in the projection of the power spectrum.
Therefore, e�ective field theoy of large scale structure shall not be enough, since
it has a well defined scale up to which the theory works. The most promising
strategy in the near future is to use emulators to interpolate numerical predictions
accounting for the baryonic e�ects.

In the case of void-lensing, we also expect the non-linearities to be less important.
However we don’t have any analytical prediction for internal void profiles and
it might no be possible to do it analytically. Emulators are highly promising for
voids since it potentially does not require the inclusion of baryonic e�ects, i.e., a
dark-matter only simulation should be su�cient.
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4 Void-Lensing

4.1 The Void-Lensing measurement and numerical
interpretation

In the following section I reproduce the published version of this work. For the sake
of being self-contained, we keep the sections which are summaries of the theory
developed in the previous sections.

4.1.1 Introduction

Given the abundance of cosmological data coming from Large-Scale Structure
(LSS) surveys such as Euclid Laureijs et al. 2011 and DESI Aghamousa et al.
2016, one of the central challenges of this era is to know how to interpret and
optimize the extraction of relevant physical information. This task passes through
the identification of discrete tracers of LSS, each one tracing the underlying dark
matter field in a particular way and therefore carrying information about the details
of the underlying Dark Matter (DM) structures.

One particular type of tracer of LSS is cosmic voids, which consists, generically
speaking, of large underdensities located in-between clusters, filaments and walls,
dominating the volume of the Universe. These voids typically range from a few
h

≠1Mpc up to ƒ 100h
≠1Mpc in radius. Hence, they populate the LSS in a very

distinct manner compared to galaxies or halos, as evidenced, for instance, by their
negative linear bias Chan et al. 2020. Thus, these structures carry complementary
information to luminous tracer statistics. In fact, it has been shown that the density
profiles of voids, as well as their abundance, are particularly sensitive to dark
energy Pisani et al. 2015, massive neutrinos Massara, Villaescusa-Navarro
et al. 2015 ; Schuster et al. 2019, primordial non-gaussianities Kamionkowski
et al. 2009 and modifications to general relativity Voivodic, Lima, Llinares et
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David F. Mota 2017b ; Perico et al. 2019. Arguably, since voids are underdense
in DM, their evolution should be more sensitive to dark energy, modifications to
gravity and neutrinos.

Despite their potential as a cosmological probe, using voids in cosmological
analysis is challenging for a couple of reasons, amongst them are the high shot-
noise in the case of void auto-correlation, the presence of cosmic variance and the
mismatch between voids found in the sparse galaxy field and the true voids in the
underlying DM field, as well as the lack of theoretical knowledge regarding the
distribution of matter in the vicinity of the void center (see Massara et Sheth
2018 for a recent development in this direction).

One particular observable involving voids is their imprint on the shape of back-
ground galaxies, the so-called void lensing (VL). Unlike overdensities, around which
the shapes of background galaxies are strengthened around the target structure,
voids will leave the opposite imprint : galaxy shape ellipticities tend to be radially
oriented around the void, as a result of an “anti-lensing”, or negative tangential
shear. It has received increasing attention in the last two decades, since the first
proposition (up to our knowledge) by Amendola et al. 1999 in 1998. Since then,
a few measurements were made Carles Sánchez et al. 2016 ; Fang et al. 2019 ;
Melchior et al. 2014, as well as analytical and numerical investigations have
shown the sensitivity of this observable to modifications of gravity Barreira et al.
2015 ; Baker et al. 2018 ; Davies, Cautun et al. 2019.

Weak-lensing combined with voids can mitigate the limitation imposed by the
sparsity of luminous tracers, since it is sensitive to the total matter and therefore
we are able to “see” voids in this field. Furthermore, weak-lensing in general is
useful to test gravity because it is sensitive to the sum of the Newtonian potentials
�L = (� + �)/2 which in general are not equal in modified gravity scenarios.
Basically, by measuring the distortion on the shapes of distant galaxies when their
light passes through voids, we are directly (the total matter) probing the cleanest
(less baryonic complications), simplest (less non-linearities) and more sensitive
environment to modified gravity.

In the literature, the detection of weak lensing around voids is basically treated
in two distinct ways : (i) by measuring the tangential shear “t, or the convergence Ÿ,
which parameterize the distortion on the shapes of background galaxies caused by
the underdense structures spanning from the observer up to the source Shimasue
et al. 2023 ; Gruen et al. 2016 ; Higuchi et al. 2013 ; Davies, Paillas et al. 2021
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and (ii) by measuring the Excess Surface Mass Density (ESMD), ��, which is
basically the projection of the total matter contained in a thin lens (in this case,
voids) localized somewhere in-between the observer and the source. Therefore, the
approach (i) is measuring the projected profile of ultra-large troughs (with sizes
of hundreds of h

≠1Mpc ), whereas the approach (ii) is measuring the projected
profiles of voids with radii Æ 50h

≠1Mpc, which is the limiting radius for which
the thin lens approximation is still valid, as we will show in this work. The aim
of the approach (ii) is to extract dynamical and morphological information about
the usual generic definition of voids, i.e., underdense structures located in-between
overdense structures (halos, sheets and filaments). The inference of void profiles and
mass function through lensing can potentially give cleaner information about voids
in the total matter and be a complementary to void analysis by, for instance, being
able to measure the void bias Fang et al. 2019, whereas approach (i) measures the
weak-lensing signature of ultra-large structures along the line-of-sight, the so-called
troughs, and the relation of these objects to a generic definition of voids (with
predictable void abundance) is not clear. Furthermore, approach (i) has less 3D
information, which approach (ii) partially recovers. Although approach (i) could
be interesting on its own, here we make a distinction between them and call by
“void lensing” approaches such as (ii) and by “troughs” the approach (i). This work
investigates aspects of VL.

Previous works on void lensing used two definitions of voids Fang et al. 2019 ;
Carles Sánchez et al. 2016. In short, the first definition finds voids in the 3D
galaxy field and the second finds voids in projections of the galaxy field with width
of 100h

≠1Mpc. The first approach has the advantage of having trivial interpretation,
i.e., �� is basically the projection of the void profile, but has the disadvantage of
signal contamination by overdensities surrounding the voids. The second approach
has no clear interpretation in terms of void definitions in the 3D field, but has the
potential of obtaining higher S/N per void, since these voids fill the whole projected
slices along the line-of-sight, minimizing the contamination by overdensities.

In this work we aim to compare VL measurements for two types of void-finders :
one which is widely used in literature and also in previous measurements of VL
in real data, based on the ZOBOV algorithm Fang et al. 2019 ; Carles Sánchez
et al. 2016, and the one that we introduce in this work. We show that it is worth
exploring the di�erent sensitivity of these di�erent approaches to cosmology and
modified gravity, due to the very distinct profiles of voids that they yield. We also
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investigate the consistency between the VL signal as measured through shear, and
the same signal as estimated directly using the DM field. If we aim to do precision
cosmology with this observable, we have to, first of all, be sure that we really
measure the projected void profile through the shear in a controlled environment.
As we will show, when working with voids to measure the ESMD, problems related
to the size of voids might arise. We believe this work paves the way for a numerical
interpretation of void lensing and therefore for precision cosmological analysis using
the data from up-coming surveys with large sky-fraction coverage.

This work is organized as follows. We begin by recapping the weak-lensing basics
that we are going to use in the following sections. In section 4.1.2, we describe the
void-finding algorithm introduced in this work, as well as the resulting profile and
abundance of voids measured in a simulation. In section 4.1.3, we compare the
performance of our void-finding algorithm with the widely used ZOBOV void finder
by measuring the ESMD in a galaxy mock. In section 4.1.7, we compare the ESMD
as measured through the tangential shear “t and the one measured directly from
the DM field of the same realisation, giving then a numerical interpretation of the
observational ESMD and addressing the issue of the thin-lens approximation in the
context of void lensing. Finally, we conclude with some observational considerations
and avenues for future works.

Weak-Lensing review

In this section, we briefly review a few results of the weak-lensing theory that
constitute the basis of this work. We refer to Schneider 2005 for an extensive
review.

As the light of background galaxies propagate through LSS, its path is perturbed
by the gravitational field in the foreground. The di�erence between the unperturbed
and observed positions, respectively — and ◊, is given by the lens equation :

— = ◊ ≠ – . (4.1)

Assuming small scalar perturbations to the Minkowsky metric, – is given by the
projection of the gradient of the gravitational potential along the line of sight :

– = 2
c2

ˆ
‰S

0
d‰

Õ (‰S ≠ ‰
Õ)‰Õ

‰S

Ò‹�(◊‰
Õ
, ‰

Õ). (4.2)
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The integral is accounting for all lenses at positions ‰
Õ up to the source position

‰S. The factor (‰S ≠ ‰)‰/‰S is a geometrical weight of the projection. Therefore, it
is expected that the observed shapes of background galaxies will be di�erent than
the original shapes. The distortion in those shapes is expressed by the distortion
matrix

Aij = ˆ—i

ˆ◊j

= ”ij ≠ ˆ–

ˆ◊j

= ”ij ≠ ˆ
2
Â

ˆ◊iˆ◊j

, (4.3)

which can be written as

A =
Q

a1 ≠ Ÿ ≠ “1 ≠“2

≠“2 1 ≠ Ÿ + “1

R

b . (4.4)

In eq. 4.3 we have defined the lensing potential

Â = 2
c2

ˆ
‰S

0
d‰

Õ (‰S ≠ ‰
Õ)

‰S‰Õ �(◊‰
Õ
, ‰

Õ). (4.5)

The convergence, Ÿ, is related to the increase or decrease of the overall image size,
whereas “1,2 parameterize the deviation of the image from a circle and are given by
“1 = 1/2(ˆ1ˆ1 ≠ ˆ2ˆ2)Â, “2 = ˆ1ˆ2Â. Using the previous results, the convergence
(Ÿ = 1/2(ˆ2

1 + ˆ
2
2)Â) can be written as

Ÿ = 1
4fiG

ˆ
‰s

0

Ò2�
�c

d‰, (4.6)

where �c = c
2
‰S/(4fiG‰(‰S ≠‰)) is the critical surface mass density. The tangential

(E mode) and cross (B mode) components of the shear are defined respectively as
“t = ≠R[“e

≠2i„] and “◊ = ≠I[“e
≠2i„], where “ = “1 +i“2. Notice that by factorizing

out the convergence in Eq. 4.4, the deviation from identity becomes the reduced
shear g = “/(1 ≠ Ÿ), which is the actual observable. In the weak field regime (our
case), g ƒ “ is a reasonable approximation. The tangential shear “t is positive in
the case in which the foreground lenses are overdensities and negative in the case
of underdensities, whereas the cross-component, “◊, is related to curl, which is not
produced by weak-lensing and therefore must vanish.

In the case of axially symmetric lenses, we can write the tangential shear in
terms of the convergence as

“t(r‹) = Ÿ̄(< r‹) ≠ Ÿ(r‹), (4.7)
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where

Ÿ̄(< r‹) = 2
r

2
‹

ˆ
r‹

0
r

Õ
‹Ÿ(rÕ

‹)dr‹. (4.8)

In this work, we are interested in measuring the projected profile of voids in the
thin lens approximation. Therefore, we take �c out of the integral in Eq. 4.6, and
integrate only in the radial bin that we regard as acting as a thin lens. By inserting
the Poisson equation Ò2�(◊‰, ‰, a) = 4fiGa

2
fl̄m(a)”(◊‰, ‰), the convergence then

becomes

Ÿ = 3H
2
0 �(0)

m

8fiG�c

ˆ
‰l+�‰/2

‰l≠�‰/2

”(◊‰, ‰)
a(‰) d‰, (4.9)

where �‰ is the bin width in comoving distance, which we consider as a thin lens.
Based on this approximation, we define the ESMD in terms of the tangential shear,
which is the quantity that we can measure in photometric surveys :

��(r‹) = �c“t(r‹). (4.10)

On the other hand, we can directly calculate the ESMD as

��(r‹) = �̄(< r‹) ≠ �(r‹), (4.11)

where

�(r‹) = 3H
2
0 �(0)

m

8fiG

ˆ
‰l+�‰/2

‰l≠�‰/2

”v(◊‰, ‰)
a(‰) d‰ (4.12)

and

�̄(< r‹) = 2
r

2
‹

ˆ
r‹

0
dr

Õ
‹r

Õ
‹�(rÕ

‹). (4.13)

In the context of this work we use the void density contrast, ”v, to calculate ��.

4.1.2 Optimum Centering Void Finder (OCVF)

In this section we present the void finder algorithm we developed for this work. First
we give the intuition and the recipe. Then we show two void statistics produced by
this algorithm applied to a N-body simulation : the void density profile and the
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void abundance.

4.1.2.1 Intuition and recipe

In order to have an intuition for how a void finder algorithm should be to deliver
an ideal VL profile 1, we explore the possibilities of VL signals produced by voids
described by an hyperbolic tangent-like profile :

”v(r|rv) © flv (r | rv)
fl̄m

≠ 1 = |”c|
I

1
2

C

1 + tanh
A

y ≠ y0
s (rv)

BD

≠ 1
J

, (4.14)

where y = ln(r/rv), y0 = ln(r0/rv), r0 = 0.37s
2 + 0.25s + 0.89 which is calibrated

to describe voids with average density which is fl̄v(< rv)/fl̄m = 0.2 of the average
density of the Universe, where

fl̄v(< rv) = 3
r3

v

ˆ
rv

0
drr

3
fl̄m(”v(r) + 1), (4.15)

s parameterises the gradient of the profile and ”c the density contrast at the void
center. This profile was first introduced in Voivodic, Rubira et al. 2020.

We choose to use this profile instead of the widely used HSW profile Nico
Hamaus, Sutter et al. 2014 because the latter has more free parameters and
therefore would make this exercise more complicated. However, it is important to
notice that the HSW is more general than the profile 4.14, which is particularly
suitable in our case.

This exercise will give us an intuition for what kind of voids we have to pursue
in order to maximize certain desirable properties, namely the signal amplitude and
emptiness, since emptier regions are more sensitive to the kind of physics we are
interested in when working with voids, namely modifications to gravity, neutrino
masses, or complementary information from underdensities which will increase the
constraining power in a multi-tracer analysis.

Comparisons between di�erent types of void finders was made in the context of
N-body simulations by Cautun et al. 2018, where they found that voids found
in the projected DM field have more power of distinguishing between modified
gravity and GR. Also, Davies, Paillas et al. 2021 shows that the same type of
voids provide the highest S/N. However, the void finder (called Tunnels) which

1henceforth, we use VL profile and ESMD (��) interchangeably
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presents the desirable features in both works have overlapping between the voids.
Our algorithm is intended to have similar voids but without overlapping, which is
desirable in order to be able to predict the theoretical void abundance Sheth et
Van De Weygaert 2004.

Figures 4.1 and 4.2 show, respectively, the void density profiles (left) and the
corresponding VL profile (right) using Eq. 4.11, when one varies the parameter s

(with fixed ”c) and the density at the void center ”c (with fixed s) in the hyperbolic
tangent profile ( Eq. 4.14). By Fig. 4.1 it is clear that voids with profiles that go
faster from their minimum density to the average density fl̄m (smaller s) produce
deeper VL profiles, with minimum at the void radius, which means that these
voids are emptier inside. Figure 4.2 shows that voids less dense in their centers also
produce deeper profiles.

Therefore the void finder must satisfy two criteria for defining each void in the
catalogue : (i) the voids must have the smallest possible value of density at the
center, ”c (ii) their central position must be as far as possible from overdensities.
The criteria (i) can be satisfied by the usage of Delaunay triangulation to define
void center candidates.

The Delaunay triangulation is a set of d-symplexes (triangles for d = 2 or
thetrahedrons for d = 3) D(P ) defined in a set of discrete points P , such that
no point in P is inside any circum-hypersphere of D(P ). In the case d = 2, the
Delaunay triangles are those which are circumscribed by circles devoided of any
point in P in their interior. In our context, the discrete set P can be any discrete
tracer of LSS. By defining void positions as the centers of circum-hyperspheres, or
circles circumscribed in Delaunay triangles in d = 2, we guarantee that criteria (i)
is being satisfied.

The criteria (ii) means that it is not enough to define void positions in empty
regions, but also that amongst all the void position candidates we must choose the
one which is further away from overdensities. This idea is based on the intuition
that voids are empty regions surrounded by walls, filaments and clusters, all of
which are overdense structures. Therefore, there is a point for each underdense
region which must be further away from these structures. Having all the candidates
from the Delaunay triangulation, the point we are looking for is the one from which
we can grow the largest possible circle (for d = 2) until it reaches a certain fraction
of the average density of the Universe, fl̄v(< rv), which is a free parameter of the
void finder. Since all the candidates will have the same average density defined by
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fl̄v(< rv), the largest is the one which satisfies criteria (ii).
Hence the algorithm can be roughly expressed in three steps :

• Perform the Delaunay triangulation to obtain the set of points which are
candidates as void positions

• Grow circles (or spheres) around them until the average density of these circles
reaches a certain density threshold, specified by fl̄v(< rv).

• The largest circle will be the first void in the catalogue and all the other
voids which intercept it will be discarded. The same process will be repeated
for the second largest remaining void. This process will be repeated until a
void which has radius smaller than the cutting radius Rc is included in the
catalogue.

The value of the cutting radius Rc is arbitrary and can be regarded as a free-
parameter.

This algorithm also captures the “essence” of the excursion set theory Sheth et
Van De Weygaert 2004, since it is a way of finding the voids which correspond
to the trajectories which first cross the threshold for void formation.
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Figure 4.1 : Left : Generic void profiles of type eq. 4.14 for di�erent choices of s,
which controls the profile gradient. Right : the resulting di�erential
surface densities, �� obtained through eq. 4.11. This exercise shows
that deeper �� profiles are produced by voids with density profiles
which have drastic transitions between ”c and the average density,
fl̄m.
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Figure 4.2 : Left : Generic void profiles of type eq. 4.14 for di�erent choices of ”c,
which controls the density at the void center position. Right : the
resulting di�erential surface densities, �� obtained through eq. 4.11.
This exercise shows that voids with smaller values of density at its
center, ”c produces deeper di�erential surface densities, ��.

Void profile and abundance

In this section, we present the resulting void profiles and abundance after applying
the algorithm described in the last section to an N-body simulation. The simulation
we use in this section is a 1h

≠1Gpc DM only box from the MultiDark suite Prada
et al. 2012. The simulation has 38403 DM particles which we sub sampled to have a
density of 1 h

3Mpc≠3. The cosmology in this simulation is (h, ��, �m, �b, n, ‡8) =
(0.67, 0.69, 0.307, 0.048, 0.96, 0.82).

Void Profile

We apply the algorithm to the simulation in its 3D version. For the purpose of
visualisation, we show in Fig. 4.3 the voids found in a 2D slice of 50 h

≠1Mpc. It is
clear that voids are well fitted in underdense regions surrounded by filaments and
walls, specially the largest voids. Although we don’t show the same feature in the
3D field, we expect the same result, since the algorithm is exactly the same.

We can understand how voids are on average by looking at their stacked
profiles, i.e ”v(rÕ) = flv(rÕ)/fl̄m ≠ 1, where r

Õ © r/Rv and flv is the density
averaged over a spherical shell at reduced distance r

Õ to the void center. Fi-
gure 4.4 shows the measured void profiles (black dots), compared to the fit
profile given by Eq. 4.14 (dashed-blue). We fit the free parameter s in each
bin of radius Rv = {[3, 4], [4, 5], [5, 6], [6, 7], [7, 8], [8, 9], [9, 10], [10, 12]} obtaining
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Figure 4.3 : Visualisation of voids found in the projection of a slice of 50 h
≠1Mpc

of DM particles.

s = {0.38, 0.4, 0.46, 0.48, 0.51, 0.52, 0.53, 0.54}, meaning that the smallest voids
goes from the minimum density to ”c = ≠1 slightly faster than large voids. The
reason for this is that smaller voids are mainly found inside overdense regions,
being “voids-in-clouds” Sheth et Van De Weygaert 2004, they don’t present
internal structure but rather they are simply almost empty places in the process
of being collapsed by the overdense surroundings. In contrast, the largest voids
present more substructures (this can be clearly seen in Fig. 4.3), smoothing out
their profiles.

The density profiles do not present a compensation wall such as the ZOBOV voids
Neyrinck 2008. This is directly related to the usage of the Delaunay approach
that defines void center positions in empty places, and the OCVF post-processing,
where only the largest void in every region is kept and all the intercepting ones
are discarded. This approach selects voids better placed into the “holes” in LSS.
Consequently, the averaged density profile will not present the compensation wall -
a signature of overdensities nearby void center positions. It is important to notice
that these voids will not be more useful than the ZOBOV ones, but will simply be
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di�erent tracers of LSS.

Figure 4.4 : The measured 3D void profiles, ”v = flv/fl̄m ≠ 1 for each bin of radius
compared to the profile given by Eq. 4.14 Voivodic, Rubira et al.
2020. The radii are given in units of h

≠1Mpc.

Void Abundance

The void abundance (void mass function, or void radius function) is the void analog
of mass function for halos, i.e., the counts of objects per bin of mass.

Several works have demonstrated its usefulness as a cosmological probe. For ins-
tance, Perico et al. 2019 and Cai et al. 2015 show the sensitivity of the abundance
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to modifications of gravity, Kreisch et al. 2019 and Massara, Villaescusa-
Navarro et al. 2015 to massive neutrinos and Verza et al. 2019 to alternative
dark energy scenarios. Recently, the first cosmological constraints using the void
abundance was obtained by Contarini, Pisani et al. 2023.

The theory involved in the prediction of the void abundance is analogous to the
theory developed for the halo mass function, which goes back to the pioneering
work of Press-Schechter Press et al. 1974 and its further developments (e.g. Bond
et al. 1991 ; Peacock et al. 1990 ; Maggiore et al. 2010). In the following, we
briefly review the theory behind the prediction of the halo mass function. For a
complete review, see reference Desjacques et al. 2018.

The so-called excursion set theory is based on the spherical collapse (expansion for
voids), in which an isolated overdensity (underdensity) embedded into an Einstein
de-Sitter background evolves and eventually collapses and virializes for halos, or
experiences shell-crossing between internal shells which expand faster than outer
shells for voids. Then, the linearly extrapolated value (from the initial conditions)
of the density contrast for which the virialization (shell crossing) occurs is used as
a threshold to define a halo (void). These values are ”c = 1.686 and ”v = ≠2.7, for
halos and voids.

In the excursion set, the Lagrangian density field is smoothed at some scale R as

S(R) © ‡
2(R) =

e
”

2(x, R)
f

=
ˆ

d
3k

(2fi)3 PL(k)W 2
R

(k), (4.16)

where PL(k) is the linear power spectrum and WR(k) is a smoothing function. The
smoothed field ”(S) is then taken to perform a random walk, starting from S = 0
(R æ Œ). The excursion set predicts the fraction of walks which will cross the
threshold ”c for the first time in the bin of mass [M, M + dM ], f(M). This fraction
is then converted into the number density of objects per bin of mass as

dn

d ln M
© d

2
N

dV d ln M
= fl̄mf(M). (4.17)

The exact form of the function f(M) depends on assumptions regarding the
smoothing function WR(k). The most popular choice, which simplifies the calcula-
tions, is a sharp-k function Bond et al. 1991. For this choice, the random walk
performed by ”(S) is Markovian and then the probability that a walk first crosses
the barrier ”c is easily obtained as a solution of the Fokker-Planck equation with
an appropriate boundary condition Maggiore et al. 2010. In this case, the halo
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mass function is given by

dn

d ln M
= fl̄m

M
fh(‹)d ln ‡

≠1

d ln M
, (4.18)

where ‹ = ”c/‡, and the multiplicity function for halos fh is defined as (in the
Press-Schechter formalism)

fh(‹) =
Û

2
fi

‹e
≠‹

2
/2

. (4.19)

The prediction for the void abundance is analogous and was first proposed by
Sheth et Van De Weygaert 2004. The main di�erence from the halo case is
the need for two density barriers, ”c and ”v. So the problem reduces to finding the
fraction of walkers which first cross ”v, without having never crossed ”c for smaller
S (larger R).

The solution obtained in ibid. is

dnv

d ln RL

= f
2SB

v
(‡)

V (RL)
d ln ‡

≠1

d ln RL

, (4.20)

with the void multiplicity function given by

f
2SB

v
(‡) = 2

Œÿ

n=1

nfi

”
2
T

S sin
A

nfi”v

”T

B

exp
A

≠n
2
fi

2

2”
2
T

S

B

. (4.21)

In the above equations ”T = |”v| + ”c, the subscript L and the superscript 2SB
stands for, respectively, the linear radius and two static barriers. This radius is the
linear comoving radius of the encompassing region in the Lagrangian space, which
will expand until the shell crossing (non-linear radius). At the shell crossing, the
void has expanded by a factor of ƒ 1.7 (see Blumenthal et al. 1992). The two
static barriers refer to the density thresholds used in the excursion set, which are
constant lines ”(S) = ”c, ”v.

In reference Jennings et al. 2013, it was noticed that the cumulative fraction
of the number of voids exceeds unity. This was interpreted as a brake in the void
number conservation. The solution given by Jennings et al. ibid. was to impose the
conservation of the volume fraction :

V (r)dn = V (rL)dnL|rL(r). (4.22)
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where the linear and non-linear radii are related as r ƒ 1.7rL. Then the void
abundance becomes

dnv

d ln R
= f

2SB

v
(‡)

V (R)
d ln ‡

≠1

d ln RL

. (4.23)

In the second paper of the series Maggiore et al. 2010, the static barrier
for halo formation was generalised to a stochastic barrier. The stochastic barrier
captures the arbitrariness involved in the halo/void finders, as well as complications
which arise from environmental conditions. These might act against or in favour of
halo/void formation and hence the critical density ”c/”v varies depending on the
local variance.

In Sheth et Van De Weygaert 2004, an extended excursion set was first
presented, i.e. the prediction for the abundance using two linear di�using barriers :

f
2LDB
v

(‡) = 2 (1 + Dv) exp
C

≠ —
2
v
‡

2

2 (1 + Dv) ≠ —v”c

1 + Dv

D

◊
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n
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2
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2
fi
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2”

2
T

‡
2
D

.

(4.24)
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Figure 4.5 : The measured abundance in a DM only N-body simulation of size
L = 500h

≠1Mpc compared to the 2LDB model prediction using two
free-parameters (—v, Dv).

The superscript in 2LDB stands for two linear di�use barriers and (—v, Dv) are
free parameters which describe, respectively, the slope and the di�usive coe�cient
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of the barriers (see Voivodic, Lima, Llinares et David F. Mota 2017b for
more details). Notice that we use the same slope and di�usive coe�cient for the
two barriers. The values of the linearly extrapolates thresholds for halo and void
formation are kept fixed in (”c = 1.686, ”v = ≠2.7).

Figure 4.16 shows the agreement between the abundance measured in the DM
only simulation with size L = 500h

≠1Mpc and the prediction given by the 2LDB
prediction, with best fit free-parameters (—v = 0.02, Dv = 0.2). The error bars
are estimated by splitting the 1Gpc in 8 subboxes, estimating the abundance in
each subbox and performing a JK in these 8 samples. The measured abundance is
compatible with the theoretical expectation with only 2 free-parameters.

4.1.3 Void lensing on galaxies

In this section we compare our algorithm OCVF to ZOBOV (ZOnes Bordering On
Voidness algorithm) Neyrinck 2008 in the context of void lensing. This algorithm
is applied through the wrapper Revolver Seshadri Nadathur et al. 2019.

We apply both algorithms to the Buzzard mock DeRose, Risa H Wechsler
et al. 2019 ; DeRose, R. Wechsler et al. 2022 ; Risa H Wechsler, DeRose
et al. 2022 ; DeRose, Matthew R Becker et al. 2022, which models the observed
spectroscopic redshifts of galaxies matching a DESI-like survey (DeRose et al. in
prep). The simulated light-cone covers 10, 313.25 deg

2, and contains 5,434,414 (BGS)
galaxies brighter than r = 20.2 distributed over the redshift range z œ [0.1, 0.3].
These galaxies are used as lenses, i.e., we find the voids using them as tracers. The
source galaxy catalogue is modelled to match the photometric redshifts of a DES-
like survey, occupying the same surface area, with density of 4.4 galaxies/arcmin2

in the redshift range z œ [0.5, 1.5].
The main di�erence between the ZOBOV and OCVF is that the latter is Delaunay

based, whereas the former is Voronoi based. Moreover, here we use the 2D version
of OCVF and ZOBOV finds voids in 3D.

We chose to show the comparison between the 2D OCVF because former works
have indicated that voids found in projected fields are more e�cient at measuring
the weak-lensing signal by voids Davies, Paillas et al. 2021 and more sensitive to
modifications to gravity Cautun et al. 2018. We confirmed that by using the same
algorithm to find voids in the 2D and 3D fields, the former provides a signal with
larger amplitude. The reason for this is that underdensities in the projected field

113



4 Void-Lensing – 4.1 The Void-Lensing measurement and numerical interpretation

Figure 4.6 : Visualisation of OCVF and ZOBOV voids plotted over BGS galaxies,
in slices of widths �‰ = 20, 50 and 100[h≠1Mpc]. The ZOBOV voids
were chosen to have their central positions well within the slices.
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correspond to anisotropic underdensities in the 3D field, with major-axis aligned
with the line-of-sight, as shown in 4.1.7.1. As a consequence, the photon’s path is
guaranteed to be deviated by underdensities over a greater distance. In contrast,
3D voids are, in general, surrounded by overdensities, which partially or completely
erase the signature of overdensities in the photon’s path.

This comparison aims to highlight the qualitative di�erences between these two
approaches, which evidences that unlike other statistics, the choice of void finder
and how it is applied to data (in the 3D or 2D field, for instance) can drastically
change the estimated observable (�� in this case).

4.1.4 Void catalogues

The OCVF is applied to the light-cone by splitting it in slices of equal widths along
the line of sight. We use the widths �‰ = 20, 50, 100h

≠1Mpc. Therefore, voids are
initially detected as underdensities in projected slices, which in fact correspond to
voids in the 3D field as we will discuss in section 4.1.7.1. The ZOBOV algorithm is
applied to the 3D galaxy field.

The void radius distribution in each version of OCVF (slice width), as well as
in ZOBOV are shown in Figure 4.7. Table 4.1 shows the total number of voids for
each algorithm. We choose to apply a radius cut in Rv = 10h

≠1Mpc in all void
catalogues. This choice is related to the minimum resolution we have in the galaxy
field, but is rather conservative, especially for the OCVF sample, which has the vast
majority of voids with radii smaller than 10h

≠1Mpc. However, we believe that
these smaller voids are predominantly spurious, i.e. does not correspond to real
underdensities in the DM field or are mostly voids-in-clouds.

The OCVF voids found in larger slices are significantly less numerous than those
found in smaller slices, however, if we normalize the curves to be integrated to
unity, all histograms have the same shape.

Figure 4.6 shows the visualisation of ZOBOV and OCVF voids plotted over the BGS
galaxy distribution. The chosen ZOBOV voids were those with central positions as
close as possible from the bin center we used to find the OCVF voids, in a way that
these voids must correspond to the underdensities in this projected slice. By visual
inspection it is possible to notice that the OCVF voids are better fitted into the
regions with less galaxies in the projected field, whereas ZOBOV voids sometimes
correspond to those regions but frequently are placed into overdense regions. This
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is expected, since OCVF finds voids in the projected slices and ZOBOV is applied to
the 3D field. It shows that three-dimensional voids are sometimes erased in the
projected field and, as a consequence, won’t be detectable through lensing, or will
simply add noise to the estimated VL profile.

4.1.5 The �� Estimator and the TL approximation

The ESMD estimator is given by

‰��(r‹/Rv) =
q

ij wij�c,ij“t,ij(r‹/Rv)
q

ij wij

, (4.25)

where “t,ij is the tangential shear in the source galaxy i due to the void j. For each
pair, the weights that minimize the variance of the signal are wij = �≠2

c,ij
Sheldon

et al. 2004, and the critical mass density is defined as

�c,ij = c
2

4fiG

‰(zi)
‰(zj)(‰(zi) ≠ ‰(zj))

. (4.26)

The tangential shear is calculated from the shear components “1,2 (defined in
section ?? and obtained in DeRose, Risa H Wechsler et al. 2019 through
ray-tracing) and the angle „ between the void and source positions.

The estimated ESMD is expressed in terms of the reduced perpendicular distance
to the line-of-sight r‹/Rv because voids with di�erent sizes present very similar
profiles in reduced coordinates. This is what we mean by stacked void profile.

The estimator 4.25 is based under the assumption that the shear “t,ij for all
voids can be obtained by assuming the thin lens approximation, in which the net
e�ect on the photons path will depend only on the target structure which can be
regarded as being contained in a single plane, i.e. ignoring the line-of-sight direction.
In other words, the remaining structures when subtracting the void will have zero
net e�ect on the photons path and the only e�ect can be computed by projecting
the density field of the voids, as in eq. 4.9. In this case the equality in 4.25 is true.
However, it is possible that individual voids extend to distances larger than the
maximum distance which does not allow us to write that �� = �c“t. In this case,
a systematic error will be introduced in the estimator 4.25.
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4.1.6 Void finder comparison

In Figure 4.8, we show the measurement of the ESMD performed using voids
found in the 3D-galaxy field with the ZOBOV algorithm, as well as voids found
in projected fields with the OCVF algorithm. The ZOBOV voids are split into two
sub-samples, Rv œ [10, 15] and Rv œ [10, 25] (h≠1Mpc). The reason why we use
these two sub-samples and 25h

≠1Mpc as maximum radius is justified in section
4.1.7. The OCVF voids are presented in three samples, each of which corresponds to
the algorithm applied to slices of widths �‰ = 20, 50, 100h

≠1Mpc. The right and
left plots show, respectively, the tangential (��t) and cross (��◊) components.

The tangential component presents several di�erences. Firstly, the ZOBOV voids
present a compensation wall, whereas the OCVF does not. The compensation wall is
a direct consequence of the same feature in the void’s 3D density profile, which
means that these voids are closer to overdensities, whereas OCVF voids are far
enough from overdensities to not have correlation with them. Another notorious
di�erence is that ZOBOV voids are shallower. There are two reasons for this. The
first is the existence of a compensation wall, which produces positive tangential
shear, “t. The second reason can be intuitively seen in Figure 4.6 : not all ZOBOV

voids correspond to underdensities in the projected field, whereas the voids found
in projected fields are guaranteed to not be correlated with overdensities along the
line-of-sight. Moreover, larger projected slices tend to select underdensities aligned
with the line-of-sight. The OCVF voids are presented in three samples, each of which
corresponds to the algorithm applied to slices of widths �‰ = 20, 50, 100h

≠1Mpc.
These voids correspond to 3D underdense structures which have their major axis
aligned with the line-of-sight (see Figure 4.10). In the Appendix B we briefly
discuss that not only the voids in the projected field present an anisotropic 3D
density profile, but also the subsample voids found using the 3D version of the same
algorithm (OCVF), therefore following the theoretical abundance (Figure 4.16), also
present anisotropic 3D density profiles. This subsample is chosen using the distances
from the 3D voids to the projected voids which present correlation between them
(Figure 4.14). This result indicates that what we really find by applying the void
finder in the projected field are combinations of 3D voids which present intrinsic
alignment between them.

The cross-components must be consistent with zero. It is almost always satisfied,
except in some cases for small r‹/Rv, where it is slightly below zero. The same

117



4 Void-Lensing – 4.1 The Void-Lensing measurement and numerical interpretation

feature also appears in the tangential component (it must go to zero as r‹/Rv æ 0).
This indicates a systematic error for small r‹/Rv that we do not comprehend.
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Figure 4.7 : Left : Radius distribution of ZOBOV voids. Right : Radius distribution
of OCVF voids

In Figure 4.9 we compare the cumulative signal-to-noise (S/N) of the tangential
component, defined as

(S/N)2(< r‹,k) =
ÿ

iÆk,jÆk

��t,iC
≠1
ij

��t,j, (4.27)

where Cij is the covariance matrix estimated through a void-by-void jack-knife.
The left plot shows the cumulative S/N for each sample, whereas the right plot

shows the same quantity normalised by the number of voids in the corresponding
sample (Table 4.1). The cumulative S/N is quite similar for all samples, except
for the ZOBOV sample with maximum radius of 15h

≠1Mpc. The normalised S/N
is significantly higher for the OCVF samples corresponding to the slices widths of
�‰ = 50, 100h

≠1Mpc. This result is expected : the larger is the slice width, the larger
is the photon’s path which corresponds to underdensities, i.e., less contamination
from overdensities.

It should be stressed that this comparison does not assess which sample is more
useful to constrain cosmology. Indeed, larger S/N does not necessarily mean more
sensitive to cosmological parameters or modifications to gravity. However, we can
say that measuring the lensing signal by voids using projected slices and the OCVF

will produce a signal which tells more about underdensities than the one obtained
using ZOBOV voids. By thinking of voids as being the most underdense tracers of LSS
and assuming that tracers with di�erent biases carry complementary information
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(see e.g. Mergulhão et al. 2022 ; Abramo et al. 2013), then the OCVF profiles in
Figure 4.8 have biases more negative than the ZOBOV profiles.
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Figure 4.8 : Left : Comparison between the ��t measurements performed using
the OCVF in slices of width �‰ = 20, 50, 100 h

≠1 Mpc (blue, orange,
and green) and ZOBOV in the bins of radius [10, 15]h≠1Mpc (red) and
[10, 25]h≠1Mpc (purple). Right : The same comparison for the cross
component ��◊.
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Void Finder Nv(0.1 < z < 0.3)
OCVF (�‰ = 20 h

≠1Mpc) 7321
OCVF (�‰ = 50 h

≠1Mpc) 2623
OCVF (�‰ = 100 h

≠1Mpc) 1131
ZOBOV 13438

Tableau 4.1 : The total number of voids for each void finder in the redshift bin z

œ [0.1, 0.3].

Figure 4.10 : Void DM profiles as a function of radial comoving distance, ‰/Rv

(centered at the void position) and the perpendicular distance to
the line-of-sight, r‹/Rv. The top panel shows profiles estimated
with ZOBOV voids found in the 3D galaxy distribution, and the
profiles labeled by �‰ = 20, 50, 100h

≠1Mpc are OCVF voids found
in slices of labeled sizes.
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4.1.7 Numerical interpretation

Voids are peculiar tracers of LSS and it is not clear whether an analytic approach,
based on perturbation theory, or e�ective field theory of large scale structure would
be able to predict their density profiles, i.e., the cross-correlation void-tracer. The
main reason for this impossibility is that voids are not uniquely defined, imposing a
puzzle on how the condition related to the void center definition will be incorporated
in the growth equation, in the case of linear perturbation theory. Therefore, a
promising approach to extract this cosmological information is to take their profiles
directly from N-body simulations and apply some emulation technique to predict
their profiles for a set of cosmologies. In the context of VL, we have the advantage
that we can directly use a DM only box to perform the emulation, since this
observable is probing directly the total matter field.

In this section we pave the way for this kind of approach. We use the DM
particles of the same realisation we used in the previous section and estimate the
DM profiles of the same voids we found in the galaxy field. Then we use these
void DM profiles to check the consistency between the �� profiles we estimated
in the previous section (through the shear of background galaxies), and the same
quantity, but estimated directly from the DM field. This consistency test will show
whether we are really having access to the DM profiles of these voids through
weak-lensing. This consistency test is crucial if we aim to use the VL profile to do
precision cosmology in the near future. As we will show, this consistency is not
trivially given in the context of voids, as it is in the context of halos.

4.1.7.1 VL and Void Dark Matter profiles

Figure 4.10 shows the stacked void profiles as a function of parallel and perpendicular
distances to the line-of-sight, estimated using the DM particles of the Buzzard
mock, i.e., the cross-correlation between void centers and DM particles for voids
found in the BGS galaxy field :

”v(rÕ
‹, ‰

Õ) = 1
Nv

Nvÿ

i

n
i

p
(�r

Õ
‹, �‰

Õ)
ÈnpÍ ≠ 1, (4.28)

where r
Õ
‹ © r‹/Rv, ‰

Õ © ‰/Rv and �r
Õ
‹(‰) denotes a bin in (rÕ

‹, ‰
Õ). Since we

are estimating these profiles in configuration space, we expect that they will be
isotropic. However, the profiles for increasingly larger slices become increasingly
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anisotropic. Since only voids aligned with the line-of-sight are detected as voids
in the projected field, the resulting stacked profile will be anisotropic and might
contain some information encoded in the void ellipticities of voids defined in the 3D
distribution (see Appendix 4.1.8). This can be directly accessed with void lensing
measurements. The relation between anisotropic and isotropic profiles is the topic
of an ongoing work.
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Figure 4.11 : Comparison between ��t as measured through the shear (blue,
orange, and green) and directly using the DM particles (dashed
black).

4.1.7.2 Consistency between shear and Dark matter density profile around
voids

In this section, we check the consistency between the ��t profile of voids measured
from the shear, i.e., ��t = �c“t and the one directly calculated using the DM
density profiles of voids presented in figure 4.10. We take the same realisation of
the density field, as traced by BGS galaxies. Therefore, we compare the observable
we have access through observations against the same observable but computed
using the DM field, which we do not have access to in real observations. In the case
where this consistency test is successful, we know exactly what we would observe in
real data, given that the assumption we are using in simulations are well calibrated
w.r.t real data, namely, the galaxy bias and possible systematic e�ects such as
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intrinsic alignment and survey mask. Before proceeding, it is important to mention
the reasons why the two quantities might di�er :

• The impact of the source distribution : In the estimator 4.25, the weights and
the “t depend on �c which contains information about the source distribution.
By predicting ��t only in terms of the void DM profile, without saying
anything about the source distribution, it is not clear whether we can recover
the same quantity than the one estimated.

• The impact of the thin lens approximation : To quote the results in terms
of ��t we are assuming that the void profile, or everything that will have
an impact on the average shape of background galaxies is contained in a
thin lens (see eq. 4.9). Since voids can have radius as large as ƒ 100h

≠1Mpc
and, furthermore, might have correlations with overdensities beyond the void
radius, it is not clear whether the thin lens assumption still holds.

In order to calculate the ��t profiles from the 3D void profiles in figure 4.10, we
will exclude small scales to avoid resolution e�ects by using the annular di�erential
surface density (ADSD) :

� (R|R0) ©��t(R) ≠ R
2
0

R2 ��t (R0)

= 2
R2

ˆ
R

R0

dR
Õ
R

Õ� (RÕ) ≠ 1
R2

Ë
R

2�(R) ≠ R
2
0� (R0)

È
,

(4.29)

where R0 is the cutting scale. For su�ciently small R0, � reduces to ��t. We
checked that the estimated profile does not depend on the particular choice of R0,
for R0 Æ 0.5 in reduced coordinate (r‹/Rv).

Since we are working with stacked void profiles, �� is proportional to the void
radius, which comes from the Jacobian when transforming the integral from r

Õ
‹ to

r‹/Rv coordinate. Thus,

�(rÕ
‹) = Rv�(r‹), (4.30)

where �(r‹) is given by eq. 4.12 and, consequently,

��t(rÕ
‹) = Rv��t(r‹). (4.31)

123



4 Void-Lensing – 4.1 The Void-Lensing measurement and numerical interpretation

10�1 100

r�/Rv

�0.8

�0.6

�0.4

�0.2

0.0

0.2

0.4

�
�

t(
r �

)[
h
M

�
/p

c2 ]
Rmax = 15h�1Mpc

Shear

DM

10�1 100

r�/Rv

�0.8

�0.6

�0.4

�0.2

0.0

0.2

�
�

t(
r �

)[
h
M

�
/p

c2 ]

Rmax = 25h�1Mpc

Shear

DM

10�1 100

r�/Rv

�0.8

�0.6

�0.4

�0.2

0.0

0.2

�
�

t(
r �

)[
h
M

�
/p

c2 ]

Rmax = 60h�1Mpc

Shear

DM

Figure 4.12 : The consistency check between the ��t estimated through the
shear of background galaxies and the same quantity estimated
directly from the DM profiles of the same voids. Respectively, the
top-left, top-right and bottom plots show the consistency test for
ZOBOV voids with radii in the ranges [10, 15], [10, 25] and [10, 60] in
units of h

≠1Mpc.

Figure 4.11 shows the results of the same ��t profiles as shown in figure 4.8,
through the estimator 4.25, against the ��t estimated using the DM particles
around the voids. In this estimation we project the void profiles using a bin width
�‰

Õ :

�(r‹) = Rv

ˆ
‰

Õ
l+�‰

Õ
/2.

‰
Õ
l≠�‰Õ/2.

d‰
Õ

a(‰Õ)”v(rÕ
‹, ‰

Õ). (4.32)

and then compute the ADSD signal using eq. 4.29.
We obtain consistency between shear and DM profiles for the OCVF samples

computed in slices of widths �‰ = 20, 50h
≠1Mpc. However for the sample with
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L = 100h
≠1Mpc, the two profiles become inconsistent at reduced radius r

Õ
‹ ≥ 1.

We obtain the same trend for the ZOBOV voids (Figure 4.12). The subsample in the
radius bin [10, 15] (h≠1Mpc) is quite consistent, whereas the subsamples including
larger voids, namely, [10, 25](h≠1Mpc) and [10, 60](h≠1Mpc), present increasing
inconsistencies.

The trend with both void finders is, the larger is the stacked void profile, the
larger is the inconsistency between shear and DM profiles. Furthermore, the void
size in the direction perpendicular to the line-of-sight seems to be unimportant,
since the normalised radius distribution of OCVF voids is the same amongst the
di�erent bins widths. We conclude that what really matters for this consistency is
the void size along the line-of-sight, which indicates that the thin lens approximation
might be broken in the cases in which the correlations between the void and its
surroundings extend beyond a certain limit.

In the Appendix 4.1.8 we show an example of how a break of the thin lens
approximation a�ects the VL profiles. We use generic analytical void profiles and
calculate �� with and without the thin lens approximation. The wrong assumption
of the thin lens approximation tends to underestimate the VL profile, specially
around r‹/Rv ƒ 1, which is exactly what we see in the DM profiles of Figures 4.11
and 4.12. The source of the inconsistency might be, then, the wrong assumption of
the thin lens approximation in the estimator 4.25.

4.1.8 Conclusions

In this work we have studied the VL profile in the context of galaxy mock. First,
we proposed a new void finder algorithm which is particularly designed to deliver
voids with deep VL profiles. Then, we apply this algorithm to the galaxy mock
and contrast it with the widely used algorithm in literature, ZOBOV. The latter has
been used in previous measurements of the VL profile in real data and provided a
higher S/N compared to an algorithm similar to ours Fang et al. 2019.

We show that, compared to ZOBOV, voids found in projected slices using our
algorithm can provide a higher S/N per void, with a deeper VL profile. These voids
correspond to combinations of voids in the 3D DM field which present intrinsic
alignment between them, suggesting that the VL profile might be sensitive to the
void intrinsic alignment. This opens some questions, namely : (i) is the void intrinsic
alignment connected to tidal fields in LSS and, therefore, to cosmology ? (ii) How
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sensitive is the VL profile to the intrinsic alignment ?
Then we checked the consistency between the VL profile as estimated through

the shear of background galaxies and the same quantity as estimated directly from
the DM density profiles of voids. This consistency test has never been made (up
to the knowledge of the present authors) and it is crucial for future cosmological
analysis using VL profile as an observable. Unlike halos, voids have density profiles
that extend over hundreds of h

≠1Mpc, which might break the assumption of voids
being contained in a thin slice, which is a basic assumption when estimating the
VL profile from the shear of background galaxies. Furthermore, voids are much less
numerous than halos and therefore residual contributions from structures along
the line-of-sight might not be averaged out, as it easily is in the context of halos.

This consistency test shows that voids with larger sizes along the line-of-sight
present inconsistencies between the shear and DM VL lensing profiles, suggesting
that the thin lens approximation assumed in the estimator is not appropriate in
the case of voids in general. For ZOBOV voids smaller than 15h

≠1Mpc and OCVF

found in projected slices smaller than 50h
≠1Mpc the shear and DM VL profiles are

consistent.
In future works, we plan to further understand the relation between the VL profile

around voids in the projected field and the intrinsic alignments of voids in the 3D
field. Also, we plan to model the VL profile with dependency on the cosmological
parameters. This work paves the way for a trivial numerical prediction : since we
have shown that for a suitable choice of void definition, the shear and DM VL
profile are consistent, emulation techniques which are becoming widely used in
cosmology can be used to interpret real data observations. Is it also important
to have an analytical prediction of the VL observable, which is the subject of an
ongoing work by the present author.

A How the thin lens approximation affects the VL profiles

In this appendix we explore the limits of the thin lens approximation, which is
relevant in the case of voids, given their large size.

As pointed out in section 4.1.7, the matching between measured and predicted
ESMD depends on whether we can consider voids as thin lenses in between the
source and the observer or not, i.e., whether we can write the convergence as
eq. 4.9. To test this assumption we use a void profile with similar shape to the
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stacked profile produced by OCVF to compute �� with and without the thin lens
approximation. We use a “worst case scenario” in which the void position is too
close to the source with redshifts zl = 0.48 and zs = 0.5, respectively for the
void and the source, and vary the void radius Rv = (50, 100, 150)h≠1Mpc. The
combination of void radius and distance between the source and the void are the
variables that control whether the thin lens is a good approximation or not.

Figure 4.13 shows the predictions for the ESMD for di�erent void radius (left)
and the relative di�erence between the same quantity calculated with and without
the thin lens approximation (right). This exercise shows that for voids with radius
of 50h

≠1Mpc the di�erence is below ƒ 5%.

Figure 4.13 : Left : The ESMD profiles for di�erent void radius with (solid)
and without (dashed) the thin lens approximation. Right : The
relative di�erence between the ESMD with and without thin lens
approximation.

B The void intrinsic alignment around projected voids

In this appendix we show some preliminary results about the shapes of 3D voids
around the voids found in the projected slices that we use in this work. Both void
samples were created using the OCVF algorithm.

We use the same simulation we used in section 4.1.2 to find both void samples.
The left plot in Figure 4.14 shows the correlation between a sample of voids found
in projected fields of width �fi = 50h

≠1Mpc with radii in the range 8 < R
b

v
<

15h
≠1Mpc and the 3D voids in di�erent radius bins. The right plot shows the

stacked profile of the 3D voids as a function of the perpendicular, ‡, and parallel,
fi, distances to the line of sight.
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The correlations shows that voids in 3D and 2D with similar sizes present stronger
correlations. The stacked profiles of the 3D voids are clearly anisotropic. This shows
that 3D voids around voids found in the projected slices present intrinsic alignment
between them, or, equivalently, that the voids found in projected slices are actually
the combination of 3D voids, which are aligned between them.

A more detailed study of the correlations and the statistical relation between
voids found in projected slices and 3D voids is the subject of ongoing work.
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Figure 4.14 : Left : Correlation between voids found in the projected field, labelled
by “b” and voids found in the 3D field, labelled by “a”. Right :
the stacked profile of 3D voids which are at a distance from the
projected voids which presents non-zero correlation, as a function of
the parallel, fi, and perpendicular, ‡, distance to the line-of-sight.

4.2 The Void-Lensing model

4.2.1 Introduction

So far, we have made a consistency check between the excess surface mass density
(ESMD) that we infer through the shear of background galaxies around voids and
the real quantity that we measure directly from the void profile. Have found that
the two quantities are consistent under some conditions. The next natural step is
to learn how to extract cosmological information from this signal, i.e., to have an
interpretation of this signal

We’ve seen that 2D voids are more suitable for measuring the ESMD. Therefore,
it would be useful to have a model for them. Since we don’t have so far an
analytical prediction for the 3D void profile in the literature, it is not possible
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to have an analytical interpretation for their ESMD. The 2D voids provide an
opportunity in this regard. The opportunity comes from the fact that the 2D voids
must be a combination of 3D voids projected along the line-of-sight. Since the
3D voids are not equally distributed across the Universe, it is expected that this
quantity depends on the 3D void abundance, for which we do have an analytical
prediction. Unfortunately, this prediction will, evidently, also depend on the 3D
profiles themselves.

This section is dedicated to the model which combines the 3D void profiles and
their abundance to produce the projected profile we measure. This is a work in its
infancy and more e�ort is required to transform it in an useful tool for extracting
cosmological information from the ESMD.

4.2.2 The relation between 2D and 3D voids

The most general relation between the density profiles of 2D and 3D must be a
functional of the 3D profiles, i.e., the 2D voids must be the combination of 3D
voids, since the only way of having underdensities in the projected field, is to have
them in the 3D field. Therefore, the most general statement about this relation is

”2D(r‹|R2D, �2D, �3D) = F [”3D(R3D, �3D)|R2D, �2D], (4.33)

where �3D and �2D are, respectively, the density thresholds used to find the 3D
and 2D voids.

To find the form of this functional is the goal of this work.
The trivial idea for the form of the above functional, is that the definition of a

2D void must be a point in a region dominated by 3D voids. Therefore, we expect
that 3D void positions must be distributed around the 2D center. Moreover, the
contributions from di�erent void radii must be weighted by the abundance. Based
on these ideas, I suggest the following form for the functional :

”2D(r‹|R2D, �2D, �3D) = 1
N

ˆ
dR3D

dnv

dR3D

(R3D|�3D)

◊
ˆ

dx‹d„ P (x‹|R3D, R2D, �3D, �2D)

◊
ˆ

drÎ”3D(|r‹ ≠ x‹|, |rÎ ≠ xÎ||R3D, �3D)

(4.34)
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where r‹ and x‹ are, respectively, the distance to the 2D void center and the
position of the 3D center in the plane perpendicular to the line-of-sight. Since
the stacked profile is anisotropic, we take r‹ aligned with the x≠axis and the
coordinate system centered at the 2D void center. Therefore, the distance between
the 3D void center and the position to which the 3D void contributes is

|r‹ ≠ x‹| =
Ò

(r‹ ≠ |x‹| cos(„))2 + |x‹|2 sin2(„). (4.35)

Figure 4.15 shows how the model works. At each r‹ a void at distance |r‹ ≠ x‹|
w.r.t. r‹ contributes with a quantity which is given by the weighted integral of the
projected 3D profile

”�(|r‹ ≠ x‹|) ©
ˆ

drÎ”3D(|r‹ ≠ x‹|, |rÎ ≠ xÎ||R3D, �3D). (4.36)

The weights are

• dnv
dR3D

is the usual void abundance, which depends on the linear power spectrum.
Therefore, this is the main ingredient of the model, since it carries cosmological
information.

• P (x‹, xÎ|R3D, R2D, �3D, �2D) is the weight function that a 3D void is found
at a distance

Ò
x

2
Î + |x‹|2 from the 2D void position.

To have an Ansatz for the weighting function P , let’s consider the following
reasoning. The 2D void profile ”2D can be understood as being “traced” by the 3D
void centers. In the case in which the void centers are point-like particles, then the
projected profile would be simply given by the density profile of these particles
around the 2D center, or the cross-correlation between 3D and 2D centers. This
reasoning makes clear that the 2D profile at the distance r‹ from the 2D void
center due to a 3D void at distance x‹ from the 2D center must be proportional
to this cross-correlation, i.e.

”
2D(r‹, x‹) Ã ›2D,3D(x‹). (4.37)

This Ansatz satisfies the limit in which there is no correlation between 2D and
3D centers, in which case the 2D profile must be flat, corresponding to taking
random points in the projected field and using the model 4.34 to predict the flat
profile.
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However, these “tracers” have their own density profiles and, furthermore, they
come in di�erent “flavours”, labelled by the 3D void radius. For a moment, let’s
think in the simplest possible case, in which there is only one 3D voids radius,
i.e., only one type of 3D profile which is tracing a 2D center. In this case, the 2D
profile must be given by equation 4.37 with only one contribution (only one type
of 3D void profile). The factor which connects both quantities is simply given by
the equation 4.36, i.e., the correlation ›2D,3D acts as a weight, or a bias, for how
strong the contribution from a projected 3D profile contributes :

”
2D (r‹, x‹) = ”�(|r‹ ≠ x‹|)›2D,3D(x‹) (4.38)

and the isotropic 2D profile is then given by the contribution of all 3D voids
distributed around the 2D center

”
2D(r‹) =

ˆ
dx‹d„”�(

Ò
(r‹ ≠ x‹ cos(„))2 + x

2
‹ cos(„))2

›2D,3D(x‹). (4.39)

In the case where there are more than one 3D void radius, this quantity must
be weighted by the 3D void abundance and then we arrive at the equation 4.34.
Therefore, the weighting function P must be given by the cross-correlation between
2D and 3D centers.

It is important to notice the most dramatic approximation we are making in all
this reasoning : that the Universe is only composed by voids. This is obviously a
crude approximation, but we expect that it should work at some extent in regions
dominated by large voids.

In the following sections we present measurements of the model’s ingredients in
a N-body dark matter only simulation box. Namely, we measure the abundance,
the 2D, 3D correlations and the density profiles of 3D voids. Then we use these
ingredients to test the model given by equation 4.34.
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Figure 4.15 : Schematical representation of how the model works. A void at
position x‹ contributes to the profile at r‹ as ”

3D(|r‹ ≠ x‹|).

4.2.3 The void abundance

The void abundance is measured from the void found in the simulation using the
density threshold �3D = 0.2. We then fit the measured abundance with the model

dnv

d ln R
= f

2LDB

v
(‡)

V (R)
d ln ‡

≠1

d ln RL

, (4.40)

where the multiplicity function f
2SB from the excursion-set with two linear di�using

barriers, is given by

f
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(‡) = 2 (1 + Dv) exp
C

≠ —
2
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2
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(4.41)

Figure 4.16 shows the measured abundance and the fit. The best fit for the
free-parameters are (—v = 0.02, Dv = 0.2). The abundance is the most important

132



4 Void-Lensing – 4.2 The Void-Lensing model

ingredient in the void-lensing model, since it is the only ingredient for which there
is a theoretical prediction, which depends on the linear power-spectrum.
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Figure 4.16 : The measured abundance in a DM only N-body simulation of size
L = 500h

≠1Mpc compared to the 2LDB model prediction using
two free-parameters (—v, Dv).

4.2.4 The cross-correlation between 2D and 3D voids.

Figure 4.18 shows the correlation between 2D and 3D void positions as a function of
the their separation x‹. We take three bins of 2D void radius R

2D

v
, [3, 5]h≠1Mpc (top-

left), [5, 15]h≠1Mpc (top-right) and [10, 25]h≠1Mpc (bottom). The 2D voids were
found with a 2D density threshold of �2D = 0.4 and in a slice �Lz = 50h

≠1Mpc,
whereas the 3D sample was found with �3D = 0.2.
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Figure 4.17 : Correlation between three bins of 2D radius and four bins of 3D
radius. The correlations show that 2D voids are correlated with 3D
voids with similar size.

The correlation ›2D,3D is calculated as n3D(x‹)/nr(x‹) ≠ 1, where n3D(x‹) is
the number density of 3D centers at a distance x‹ from the 2D center and nr(x‹)
is the same quantity for random points.

We can drawn some observations from these correlations :

• 2D voids of a given size tend to correlate with 3D voids of the similar size.

• The smallest sample 2D ([3, 5]h≠1Mpc) is anti-correlated with the largest 3D
sample.

• The largest 2D sample present no-correlation with smallest 3D sample.

• The correlation between the largest 2D and 3D samples is stronger than the
correlation between the smallest ones.
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These observations suggest that the larger 2D voids are the result of combinations
of 3D voids of similar size or larger, whereas the smallest 3D voids are randomly
distributed around the 2D centers. This might be a direct consequence of the 3D
algorithm, which tends to place small voids around large voids.
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Figure 4.18 : Correlations between the bins of 2D and 3D that we interpolate to
test the model.

We can say that the 2D voids are then tracing the same kind of structures than
the 3D ones, i.e. large (small) 2D voids carry projected information from large
(small) 3D voids.

4.2.5 Anisotropic void profiles
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Figure 4.19 shows the density profiles of 3D voids which are at a distance from
the 2D centers with non-zero correlation. In another words, it is the subsample of
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Figure 4.19 : Density profiles of 3D voids which are correlated with 2D voids,
i.e., 3D voids at a distance from 2D centers which present non-zero
correlation.

3D centers which are around the 2D centers and, therefore, it is the subsample of
3D voids which combine to form 2D voids through the model 4.34.

Clearly all the profiles present a certain degree of anisotropy. This anisotropy
suggests that the 3D voids which combine to form the structures identified as voids
in the projected field, are found in regions of tidal forces with direction aligned
with the line-of-sight. In another words, the voids which combine to form 2D voids
present an intrinsic alignment between them.

The smaller voids present profiles with higher degrees of anisotropy than the
larger voids. This is expected, since the larger voids are better approximated by the
spherical expansion and are found in the centers of large underdensities, whereas
smaller voids are mainly voids-in-clouds.

4.2.6 Testing the model

In this section we test the model 4.34 and access the impact of each ingredient.
We use the ingredients presented in the previous sections and then numerically

perform the integral three integrals 4.34 with interpolated 2D-3D correlations
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(Figure 4.17), 3D density profiles (Figure 4.19) and abundance (Figure 4.16). We
use the interpolated values of measured quantities from the simulation to avoid
any di�erence arising from a poor modelling of any of these ingredients, as well as
to highlight the usefulness and limitations of equation 4.34.

To show the impact of each ingredient in the prediction of the 2D density profile,
we perform the model in four versions, namely, the integral 4.34, which we call the
“full model” and three versions taking one ingredient at a time, i.e., one without
weighting by the abundance, but only by the correlations, one weighting without
the correlations, but only with the abundance and ,finally, one which is simply the
integral 4.34 without any weight.

The upper plot in Figure 4.20 shows four versions compared to the 2D profile
measured in the simulation. As expected, the version without weights (green) is
the worst one compared to the measured profile (dashed-black). The incorporation
of the correlations (red) corrects the profile specially for small r‹, but also slightly
shifts the curve closer to the measured one for large r‹. The weighting by the
abundance almost completely corrects the profile for large r‹, whereas it worsens the
discrepancy for small r‹. The latter e�ect is easier to understand : the abundance
privileges smaller voids, which should be more relevant for large r‹, since small
voids tend to be found around the large underdense regions, but not close to the
center of those regions. That is why the over weighting of small voids (as in the case
of weighting only by the abundance) produces the large discrepancy at small r‹.
The inclusion of the 2D-3D correlations corrects this by attributing more weight
to larger voids. The lower plot in Figure 4.20 shows the same result as a function
of the reduced radius r‹/R̄

2D

v
, where R̄

2D

v
= 7.36h

≠1Mpc is the average radius in
the 2D void sample. This result in reduced radius is useful to see in which regime,
amongst one-void and two-void terms, the model works.

The model perfectly matches the measurement for r‹ Ø 7.5h
≠1Mpc (r‹/R̄

2D

v
Ø 1)

and increasingly deviates for smaller r‹ (r‹/R̄
2D

v
). Given the intuition above, this

discrepancy might be due to an over-weighting of small voids close to the void
center, or an under-estimation of cross-correlation between 2D and larger 3D voids
for small x‹.
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Figure 4.20 : Upper plot : The full model (blue, equation 4.34), the model only
weighted by the abundance (orange), the model only weighted by
the 2D-3D cross-correlations (red) and the model without weights
(green). Lower plot : the same result presented as a function of
reduced radius.
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Cosmology is in an era in which we’ll have an abundance of data. Basically, the next
generation of galaxy surveys will map all the available sky area, up to high redshifts.
All these data is a great opportunity to test our current knowledge about how
structures form, which depends on how the laws of physics operate on large-scales.

The most important physical interaction on large scales is gravity. Since the
cause for cosmic acceleration is not yet clear, it is possible that gravity is modified
on large-scales.

Cosmic voids are the ideal environment to test deviations from general relativity
on large-scales. If there is any deviation from general relativity, it will manifest, in
its simplest form, as an additional scalar field, which is screened on high density
environments, but can have its e�ects revealed by the most underdense and largest
structures in the Universe.

The void science finds itself in an early stage of development, especially when it
comes to theoretical predictions. However, recent works have shown its potential as
a complementary probe, even beyond as a test of gravity. Arguably, the evolution
of voids is sensitive to dynamical dark energy and massive neutrinos, since their
relative density is higher inside voids.

Amongst the limitations of void science, there is the fact that we use the sparse
galaxy field to run void finder algorithms. As a consequence, the galaxy voids does
not correspond to the dark matter voids in general. One way of circumvent this
limitation and gain information in void analysis, is to make usage of the fact that
voids leave an imprint in the shapes of background galaxies. Therefore, we can infer
the density profiles of voids in the dark matter field by measuring the tangential
shear of background galaxies around voids.

The definition of what is a void is not unique, leaving freedom of choice when
defining what is a void. The first contribution of this work is to show that this
freedom of choice plays a significant role in the resulting �� profile around voids.
We propose a new algorithm which provides a deep �� profile. We show that the
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depth of these profiles is related to voids which are better defined, i.e. voids which
are centered well within the underdensities in large-scale structures. We compare
the �� as measured by our algorithm to the same observable measured by the
ZOBOV algorithm and find significantly deeper �� profiles for our voids. This is
consequence of the fact that we apply our algorithm on projected slices, rather
than the 3D field, as well as due to the way in which we define voids.

Then, we make a consistency check between the �� as measured through the
shear of background galaxies, as done in real observations, and the same quantity
as measured directly from the dark matter density profiles of the same voids, the
quantity we don’t have access in real observations. This consistency check has
never been done before for voids. We have two reasons to suspect that voids will
present inconsistencies between these two measurements : (i) this measurement is
based on the assumption that voids act as thin lenses. However, voids can extend
over hundreds of h

≠1Mpc and might not respect the thin-lens approximation, as it
easily is in the case of halos. (ii) The contribution from the source distribution is
cancelled out in the case of halos (or galaxies) due to the high number of them.
Voids occupy large volumes and therefore are less numerous. The extent to which
the �� does not depend on the source distribution is not clear.

The consistency test shows that the �� around voids defined in slices larger
than ƒ 100≠1Mpc is not consistent between shear and dark-matter. The fact that
these voids present elongations along-the-line of sight, and that the break of the
thin-lens approximation has the same e�ect on shear profiles as we observe in
this test, suggests that the inconsistency is coming from the large size of voids
along-the-line of sight. For smaller slices, the shear and dark-matter �� profiles
are consistent. We obtain a similar result for ZOBOV voids, i.e., larger voids present
larger discrepancies between shear and dark matter �� profiles.

Since voids found in the projected field present deeper �� profiles, it is desirable
to have an analytical model for their profiles. We propose the idea that the profiles
we measure for 2D voids (and infer through ��) is related to the profiles of 3D
voids as an integral weighted by the correlation between 2D and 3D void positions
and the abundance of 3D voids. We show that this model is capable of providing
the exact same profile as the one directly measured from an N-body simulation in
the two-void regime, whereas the one-void regime is increasingly inconsistent as
the radial distance to the void center decreases. The reason of this discrepancy is
the subject of an ongoing work.
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Conclusion

The science concerning the cross-correlation between cosmic voids and shear
(Void-Lensing) is in its infancy. In this work we have shown that this observable
can be of great interest under a suitable choice of void-finder algorithm. We show
that the �� profile that we are going to be able to measure in the next generation
of galaxy surveys is exactly due to the projection of the dark matter density profiles
of voids. Finally, we provide an analytical model to connect the measured �� from
void in the projected field to voids defined in the 3D field, for which we know how
to predict the abundance. We believe that these advancements are crucial to future
analysis involving void-lensing.
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