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Dissertation submitted to the Physics Institute of the

University of São Paulo in partial fulfillment of the

requirements for the degree of Master of Science.

Banca Examinadora:
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“If the doors of perception were cleansed

every thing would appear to man as it is,

Infinite.”

– William Blake
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Resumo
O atual paradigma da cosmologia é o modelo ΛCDM, o qual tem em seu cerne a

Relatividade Geral (RG) de Einstein. Sob a suposição de que o universo é descrito pela

RG em escalas cosmológicas e através de toda a sua história desde o Big Bang, o modelo

padrão tem tido sucesso em explicar todos os dados dispońıveis até agora. Entretanto,

inconsistências teóricas no modelo padrão, assim como a recente tensão entre medidas

independentes de H0, têm fomentado o estudo de alternativas ao ΛCDM. Em particular,

alternativas à RG têm emergido como tentativas de explicar a expansão acelerada sem a

necessidade da constante cosmológica. Os levantamentos de galáxias do futuro próximo

entregarão uma enorme quantidade de dados que podem trazer luz à F́ısica que rege o

universo em largas escalas. O tema principal deste trabalho é o estudo de como diferentes

estratégias observacionais são capazes de vincular parâmetros senśıveis à gravitação, bem

como a performance de diferentes estimadores do espectro de potências aplicados aos da-

dos simulados. As duas estratégias que comparamos são (i) tratar todas as galáxias em

uma certa observação como compondo uma população com um bias efetivo e (ii) sepa-

rar a população de galáxias em duas, cada uma com um bias diferente. Em particular,

comparamos as ferramentas estat́ısticas dadas pelos estimadores FKP e multi-tracer do

espectro de potência. Além desses resultados, também apresentamos dois trabalhos par-

alelos, mas relacionados ao tema principal desta dissertação: (a) um método para medir

a função de crescimento de estruturas de um modo independente de modelos; e (b) um

código para construir cones de luz (light cones) de simulações de N-corpos ou de catálogos

de halos a partir de mapas a tempos contantes (snapshots).

Palavras-chave: Testes de gravidade, Estruturas em Largas Escalas, Estimador

Multi-Tracer, FKP, Distorções no espaço de Redshift, Taxa de crescimento, Matriz de

Fisher.





Abstract
The current paradigm of cosmology is the ΛCMD model, which has at its core Einstein’s

General Relativity (GR). Under the assumption that the Universe is described by GR

on cosmological scales, and throughout all its history since the Big Bang, this standard

model has been successful in explaining all the available data so far. However, theoretical

inconsistencies in the standard model, as well as the recent tension between indepen-

dent measurement of H0, have generated increased interest in the study of alternatives to

ΛCDM. In particular, alternatives to GR have emerged as attempts to explain the accel-

erated expansion without the need for the cosmological constant. The upcoming galaxy

surveys of the next decade will deliver a huge amount of data which we are hoping will

bring light to the underlying physics on large-scales. In the main part of this work we

study how different observational strategies are capable of constraining gravity sensitive

parameters, as well as the performance of different estimators applied to simulated data.

The two strategies we compare are (i) to treat all galaxies in a certain observation as

composing one population with an effective bias and (ii) to split the galaxy population

in two, each with a different bias. The statistical tools we compare are the FKP and

the multi-tracer estimators. In addition to these results we also present two parallel but

related works: (a) a method to estimate the matter growth rate in a model-independent

way, and (b) a numerical code to build light cones of N-body simulations or halo mocks

starting from snapshots of those simulations.

Keywords: Tests of gravity, Large-Scale Structure, Multi-Tracer estimator, FKP,

Redshift Space Distortions, Growth rate, Fisher matrix.
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Chapter 1

Introduction

1.1 Why to test general relativity on cosmological

scales

Einstein’s theory of General Relativity (GR) is a robust gravitational theory con-

necting the matter-energy content of the Universe with its geometry through dynamical

equations. It is remarkable that GR has been successful in passing all the tests to which

it was subjected since its formulation [24, 88].

The “classical” GR tests are: the perihelion precession of Mercury [81], the light

deflection by the Sun [65], and the gravitational redshift [98]. Recently GR has passed

another test, now in the strong field limit: the gravitational waves from a stellar binary

black hole merger were detected by LIGO [24]. Also, the direct observation of a black hole

[54] confirms the existence of such objects, which are a central prediction of GR. These are

called “local tests”. The Cosmic Microwave Background (CMB), on the other hand, is a

test of GR at early times and it shows a tremendous agreement between data and theory

[9], although there seems to be a large amount of tension between the measurement of

H0 – the Hubble parameter today – by local observations and that which can be inferred

from CMB spectrum as observed by Planck, giving rise to an intense debate in literature

[41, 71, 83, 90, 100].

Despite the success of GR, since the first observational evidence that the Universe
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is currently undergoing a phase of accelerated expansion [10, 75], several models have

emerged as attempts to explain it [19]. Within the framework of GR, together with

the assumption of a homogeneous and isotropic Universe, the simplest model which can

reproduce the observed expansion is the addition of a constant term Λgµν – the cosmo-

logical constant – to the Einstein’s equations. Einstein’s equations with the addition of

the cosmological constant (CC) constitute the basis of the standard cosmological model

known as Λ Cold Dark Matter (ΛCDM). The introduction of the cosmological constant

is interpreted as a form of energy density in the cosmic pie – the dark energy.

The regime where dark energy is relevant – see Figure (1.1) – has not yet been thor-

oughly explored by gravitational tests. The assumption that GR is valid on cosmological

scales and throughout the whole history of the Universe is an extrapolation of the physical

theory valid in the regimes where GR has been extensively tested.

Figure 1.1: Tests of GR. The vertical axis is the spacetime curvature and the horizontal

axis is the gravitational potential. The blue dashed lines indicate typical length scales

(both scales are in log10). Extracted from https://www.icg.port.ac.uk/cosmological-tests-

of-gravity/.

An alternative approach to dark energy is to modify the laws of gravity. The proto-
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type of alternatives to GR was the Brans-Dicke (BD) theory [16], which consists essentially

of a scalar field non-minimally coupled to the geometry. In these models, the accelerated

expansion is not driven by an exotic fluid, but rather it is due to a modification in the

laws of gravity compared with GR.

Another recent attempt to explain the accelerated expansion without the need for

dark energy is the hypothesis that the mapping between the observed redshift and the

scale factor is not the standard relation 1 + z = 1/a(t), but instead the observed redshift,

zobs 6= z, due to some non-standard mapping [99]. What accounts for this discrepancy

could be either that the actual metric of the Universe is not well described by FLRW

metric, or that the laws of gravity are not given exactly by GR – or both.

These alternatives to explain the cosmic acceleration without the need for an exotic

fluid, as well as the fact that GR is only firmly tested in solar system scales [97] and early

times, are one of the main motivations for some of the upcoming galaxy surveys, which

will allow us to test gravity over large scales with an unprecedented precision – and much

of the science case for funding EUCLID [56], J-PAS [13] and DESI [57] lies in their power

to test these Modified Gravity (MG) theories.

There are two categories of constraints we can impose on gravity on cosmological

scales. The first category employs measurements of distance and expansion rate to im-

pose geometrical constraints. This is the case of the Type Ia Supernovae observations,

which probe the cosmic metric and the expansion history but not the dynamics of pertur-

bations [51]. MG models can mimic the exact same expansion history of ΛCDM, whereas

presenting different scenarios for the growth of perturbations.

The second category of constraints can break this degeneracy. Redshift Space Distor-

tions (RSD) and Galaxy Clusters (GC) are part of this category, which probe the growth

history. There are also probes which are sensitive to both the expansion and growth, such

as the CMB and Weak Lensing (WL). These two categories of probes can be combined to

break the degeneracy between theories of gravity and also as consistency tests. Further-

more, independent constraints coming from different categories can be combined in order

to obtain tighter constraints on the parameters.

One of the main interesting observables for constraining gravity on large scales is

the growth rate of linear matter perturbations, usually parametrized in terms of fσ8,
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which combines the growth rate (f) with the amplitude of the perturbations (σ8). In the

framework of GR, this quantity is scale-independent. However, in MG models fσ8 is, in

general, scale-dependent.

1.2 Einstein’s gravity and beyond

GR was a pioneering physical theory when it came to using modern mathematical

tools. GR was the first theory to be formulated with theoretical and abstract motivations

rather than experimental ones [101]. These motivations include the incompatibility of

Newton’s theory of gravity with special relativity, as well as the thought experiment

that introduces the idea that gravity is a geometrical phenomenon. Nowadays, GR is

regarded as a fundamental pillar of modern classical physics, and it has reached great

success in passing a range of experimental tests with great precision. These tests include

the Mercury perihelion precession [89], gravitational lensing [67], gravitational waves [1],

as well as the accelerated expansion of the Universe and the distribution of matter in

large-scale structures [29]1.

GR is based on the idea of the equivalence principle, which states:

No experiment can be done locally by one observer in order to distinguish between the

situation of being in a free fall in a gravitational field, or being in space, far away from

any other source of gravity or any other physical interaction.

Or in Einstein’s own words [36]:

“A little reflection will show that the law of the equality of the inertial and gravita-

tional mass is equivalent to the assertion that the acceleration imparted to a body by a

gravitational field is independent of the nature of the body.”

Einstein is telling us that the dynamics of a body in a gravitational field is only

determined by its initial position and velocity, and does not depend on internal features,

like mass. In order words, gravitational mass coincides with inertial mass. This feature

1Actually, GR needs the introduction of the cosmological constant Λ in order to predict the observed

expansion history. However, as we will see, the cosmological constant carries problems both of a theoretical

and an experimental nature. The need for a cosmological constant is one of the main motivations for

MG.
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makes gravity unique among physical interactions, since it does not depend on any internal

label. In electromagnetic interaction, for instance, the dynamics depends on one internal

label which is the electrical charge.

The equivalence principle can be the starting point to understand the nature of grav-

ity and spacetime at the classical level. If the equivalence principle is valid, then spacetime

can be modeled as a four-dimensional differentiable manifold. As a differentiable mani-

fold, spacetime can be locally approximated by a hyperplane. In this framework, gravity

is only a manifestation of the curvature of the four-dimensional manifold, and test parti-

cles in a gravitational field are not subjected to a conventional physical force, but rather

they follow a geodesic in this curved spacetime. Since matter is the source of gravitational

fields, there is a connection between the spacetime geometry and the matter content. GR

is the theoretical framework which tells us how this connection works: how matter/energy

moves in curved spacetime, and how matter/energy tells spacetime how to curve.

The curvature of a geometrical space can be expressed in a precise mathematical

way: we can transport a vector Xµ from one initial point x0 to another final point xf

using different paths, and when that transportation generates a difference between the

two vectors at the final point, δX(xf ), then we say that this manifold has some curvature.

This can be expressed as:

Rµ
νδγX

ν = (∇δ∇γ −∇γ∇δ)X
µ , (1.1)

where Rµ
νδγ is the Riemann tensor, which can also be regarded as the commutation of the

covariant derivatives ∇µX
ν = ∂µX

ν − ΓνδµX
δ, and Γνδµ is the Christoffel symbol, defined

as:

Γνδµ =
1

2
gνα(∂δgαµ + ∂µgδα − ∂αgδµ) . (1.2)

Now, we know how to measure the curvature of spacetime and we would like to

connect this curvature to the matter content in it. We can find this connection between

geometry and matter by picking an action and applying the least action principle. To

guess which Lagrangian to pick, we need some scalar related to the Riemann tensor (i.e.,

the curvature). We can construct a simple scalar by contracting the Riemann tensor with

the metric R ≡ gµνRλ
µλν . We also need to guarantee that the volume element is a scalar
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under a Lorentz transformation and this can be accomplished by multiplying the volume

element in the Euclidean manifold d4x by
√−g.

The simplest guess for the GR action is, therefore:

SEH =
1

16πG

∫
d4x
√−gR + Sm(Ψi, gµν) , (1.3)

where G is the Newtonian gravitational constant, Sm is the matter action, which depends

on matter field, Ψi, with i referring to some species i (baryons, radiation, etc.). The

action (1.3) is the so-called Einstein-Hilbert (E-H) action.

If we vary the E-H action with respect to gµν and apply the principle of least action,

then we end up with the set of Einstein’s equations:

Rµν −
1

2
gµνR = 8πGTµν , (1.4)

where Tµν is the energy momentum tensor defined as Tµν = −2√−g
δSm
δgµν

.

An interesting feature of GR is that its equations are non-linear. Physically, this

feature comes from the fact that gravity can source itself, i.e, gravitational energy and

gravitons (or gravity waves) also carry momentum and energy, and therefore gravitate.

However, the “minimalist” version, equation (1.4), of Einstein’s equations is not

necessarily well equipped to explain the accelerated expansion. In order to explain the

observed acceleration, one solution is to add a constant term −2Λ, where Λ is the cosmo-

logical constant, to the E-H action. Therefore, the derived Einstein’s equations are:

Rµν −
1

2
gµνR + Λgµν = 8πGTµν . (1.5)

In fact, when writing down Einstein’s equations we have the freedom to add a constant

term – the cosmological constant. Although historically it was first written (by Einstein

himself) on the left-hand side, the current interpretation is that it represents a new form

of vacuum energy which permeates all space, has constant energy density and causes the

accelerated expansion. Hence, it makes more sense to write the cosmological constant

term on the right-hand side of Einstein’s equations – and its generalization, dark energy,

could in principle have varying energy density and pressure, as well as perturbations.

Actually, we know that there must be a constant term in the right-hand side of

the Einstein field equations due to zero-point energy of the vacuum – let us call it Λvac.
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Indeed, from the Heisenberg uncertainty principle, the energy of a quantum harmonic

oscillator cannot be zero, because the potential and kinetic energies cannot vanish at the

same time. It turns out that when calculating the total zero-point energy of vacuum using

the renormalization procedure, typically the resulting value is many orders of magnitude

larger than the inferred value from observations. This disagreement is known as the

“vacuum catastrophe” [7].

Thus, in order to fit observations one needs to use the freedom of adding a constant

term in Einstein’s equations, and to introduce what we call the bare cosmological constant

Λbare [20]. Thus, the effective cosmological constant will be the sum of the vacuum

contribution and the bare cosmological constant:

Λeff = Λvac + Λbare . (1.6)

Using the Planck cosmological parameters [9], the effective (inferred) cosmological con-

stant is:

Λeff = 1.1056× 10−52m−2 , (1.7)

whereas the value of Λvac should be at least ∼ 1060 orders of magnitude larger than this

value [61]. That is, the Λbare cosmological constant - the one which is needed to reproduce

current observations - needs to cancel the vacuum contribution in such a way that the

remaining value is almost zero, but not exactly zero. This is known as the fine-tuning

problem.

This makes explicit the multifaceted character of the cosmological constant problem:

it has consequences from the more fundamental physics to the largest scales. The dis-

cussion is much richer than this sketch. For further discussion about this topic see, for

instance, [20, 61, 70, 95].

The landscape beyond Einstein

These unsolved issues have led to the exploration of possible modifications in GR

which could explain the accelerated expansion in a more “natural” way. These alternatives

rely on loopholes in Lovelock’s theorem [26], which states that the more general tensor

defined locally in a four-dimensional manifold with zero divergence and second order
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derivatives of the metric is the Einstein tensor:

Gµν ≡ Rµν −
1

2
gµνR + Λgµν . (1.8)

Figure 1.2: Different ways to modify GR exploring loopholes in Lovelock’s theorem.

In other words, Lovelock’s theorem states that the unique gravitational theory given

the above conditions is GR. Hence, alternatives to GR must add a new degree of freedom

(scalar, vectorial or tensorial), or add new dimensions to the spacetime, or add higher

orders than second derivatives of the metric – or maybe even be non-local. This landscape

of alternatives is illustrated in Figure (1.2).

One of the more popular ways of modifying GR is to redefine the E-H action by

replacing the Ricci scalar by some function of it:

S =

∫
d4x
√−gf(R) . (1.9)

The function f(R) must satisfy local constraints and also reduce to GR where we know

that GR is successful. In one particular set of viable theories [48], f(R) has the form:

f(R) = R + α
Rn

Rn + 1
, (1.10)
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where α and n are free parameters to be constrained by observations. It is possible to show

that deviations of this class of models from GR can be parameterized by fR0 = ∂f(R0)/∂R

and n, where R0 is the background value of the Ricci scalar at the present epoch [48].

Models of this kind are known as Hu-Sawicki models. This class of theories are

equivalent to adding a new scalar degree of freedom in GR [28]:

SE =

∫
d4x
√
−g̃
[

1

2κ2
R̃− 1

2
g̃µν∂µφ∂νφ− V (φ)

]
, (1.11)

where the tilde indicates that quantities are written in the Einstein frame, which means

that the metric g̃µν is related to the original metric gµν via a conformal transformation

g̃µν = Ωgµν . This is called the Einstein frame because, when written in terms of tilde

quantities, the action reduces to that of GR plus a scalar field.

The price of adding a scalar field to GR is the emergence of a fifth force, which is

sourced by the scalar field [53]:

~Fφ = − β

MPl

M~∇φ , (1.12)

where β is a dimensionless coupling constant and MPl ≡ (8πG)−1/2 is the Planck mass.

This fifth force should be suppressed in environments such as the solar system through

screening mechanisms, e.g. the Chameleon mechanism [53, 94].

A promising way to constrain this class of theories on large-scales and late times is by

measuring the growth rate of density perturbations in linear theory, f ≡ d ln(D)/d ln(a),

which we will introduce in chapter (3). In general, models of MG predict a scale-

dependence in the growth rate [17], whereas GR predicts a scale-independent growth

rate.

Figure (1.3) shows a forecast for the growth rate performed with the DESI [8] survey

specifications. We see that the expected error bars might be capable of excluding viable

MG theories or perhaps exposing deviations from GR.

In this work we focus on strategies for constraining the growth rate. In particular, we

analyze how different strategies are capable of extracting information from the Large-scale

structure data concerning the scale-dependence of the growth rate. We do not focus on a

particular class of MG theory; instead, we aim to propose a model-independent analysis.
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Figure 1.3: Growth rate forecast performed with specifications of the DESI [8] survey.

The curves are predictions for the growth rate in linear theory for ΛCDM as well as for

two MG theories: f(R) [48] and Dvali-Gabadadze-Porrati (DGP) braneworld theories

[34]. Note that the f(R) predicts a scale-dependence on the growth rate, whereas in GR

and DGP the growth rate is scale-independent. Figure extrated from [50].

This dissertation is organized as follows. First, we briefly review the basis of modern

cosmology – the background and first order perturbations evolution. Then, we introduce

the physical observable which plays a central role in this work – the growth rate, which

arises naturally in redshift space distortions measurements. Chapters 4 and 5 present the

statistical framework we use in our analysis. Finally, in chapter 6, 7 and 8 we present the

results of three parallel projects: in chapter 6, the main project of this dissertation, in

chapter 7 a code for constructing light cones and in chapter 8 partial results of a work in

collaboration with Raul Abramo and Luca Amendola.
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Chapter 2

The smooth Universe and the

inhomogeneous Universe

2.1 Homogeneous Universe in a nutshell

2.1.1 Hubble’s law

Despite the existence of inhomogeneities such as galaxies and clusters of galaxies, the

empirical data suggest that the observable Universe is homogeneous on scales & 70 h−1

Mpc [68, 79].

The assumption of homogeneity and isotropy of the Universe is known as the “cos-

mological principle”, and it is the starting point for applying Einstein’s equations to the

whole Universe. Furthermore, the cosmological principle ensures that our point of view is

representative of the Universe as a whole, and that the cosmological tests from our point

of view are not biased by local features.

The standard Big Bang model, which is highly supported by empirical data, states

that about 14 billion years ago the Universe was very hot and dense, endowed with a

homogeneous and isotropic distribution of matter, and that it has been expanding and

cooling ever since.

In a homogeneous and isotropic Universe the relative velocity between two observers
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is given by Hubble’s law:

vB(A) = H(t) rBA , (2.1)

where rBA is a vector pointing from A to B, and H(t) is the Hubble parameter, which

depends on time but not on the spatial position.

It is easy to show that the Hubble law is in complete agreement with the cosmological

principle. Consider a third observer at point C. Then the relative velocity between C

and A is:

vC(A) = H(t)rCA . (2.2)

Then, the relative velocity between C and B is:

vC(A) − vB(A) = H(t)(rCA − rBA) = H(t)rCB = vC(B) . (2.3)

That is, the observer B sees the same Hubble law as the observer A.

It is important to note that the Hubble law is only valid on scales where the Universe

is homogeneous. In practice, of course, it is not a perfect description: measured velocities

have contributions from the peculiar motion of galaxies toward a more massive structure.

Hence, under the approximation of a homogeneous matter distribution, the distances

between any two observers increase as

rBA = a(t)χBA , (2.4)

where χBA is the comoving distance, or the distance at a fixed instant of time, and a(t)

is the scale factor, which tells us how χBA distance evolves in time. Thus, when we say

that the Universe at some time was 1000 times smaller, this would mean that the physical

distance between any two observers would be 1000 times smaller, even if the comoving

distance between them remains the same. Therefore, we have that:

ṙBA =
ȧ

a
aχBA =

ȧ

a
(t)rBA , (2.5)

⇒ H(t) =
ȧ

a
(t) . (2.6)

Therefore, we can see that H(t) measures the expansion rate. The current value H0 ≡
H(t = 0) has been measured by various experiments, and recently a serious tension (> 3σ)

between independent observations has generated an intense debate in the literature – see,

e.g., [14].
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Friedmann equations

Now we need dynamical equations to tell us how the dynamics of the homogeneous

and isotropic Universe works, i.e. how the background evolves in time. This means

putting the Einstein’s equations to work with the metric and energy-momentum tensor

of the background (homogeneous and isotropic) Universe.

In covariant theories of gravity there is no absolute notion of either time or space:

instead, the absolute quantity is a combination of space and time – the spacetime interval.

We could write down a spacetime interval in any coordinate system that we choose. In

general, we write

ds2 = gµνdx
µdxν , (2.7)

where gµν is the metric. Using the cosmological principle as a guide, there is a particular

class of coordinate systems which allows for the definition of the same “cosmic” time on

t = const hypersurfaces:

ds2 = −dt2 + a(t)dΣ2 , (2.8)

where dΣ2 is the metric of the 3-D spatial sector:

dΣ2 =
dr2

1−Kr2
+ r2

(
dθ2 + sin2 θdφ2

)
. (2.9)

In this expression, K is the spatial curvature, which can assume positive, null or negative

values, corresponding respectively to closed, flat and open geometries. Note that the time

evolution of the metric of a homogeneous and isotropic Universe is completely described by

the scale factor a(t). The line element (2.8) is known as Friedmann-Lamâıtre-Robertson-

Walker (FLRW) metric.

The curvature constant K is well constrained by recent observations to be almost

vanishing [9]. However, recent works [32, 44] pointed out the possibility of a closed

universe, despite the fact that the widely accepted paradigm is a flat ΛCDM Universe. In

this work we always assume flat geometry of the spatial section.

In a homogeneous and isotropic Universe the energy momentum tensor reduces to

the one of a perfect fluid:

T µv = (ρ+ P )uµuv + Pδµv , (2.10)
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where u = (−1, 0, 0, 0) is the four-velocity of the fluid in comoving coordinates, ρ and

P are, respectively, the energy density and pressure of the fluid and δνµ is the Kronecker

delta.

Now we have all the ingredients to put the Einstein equations (1.4) to work. Doing

this means plugging the metric tensor gµν and the energy-momentum tensor Tµν into

Einstein’s equations, and finding the two unknown functions a(t) and ρ(t) which describe

the evolution of the background metric and fluid density. The pressure in (2.10) is related

to the energy density through the equation of state w, and in cosmology we usually write

P = wρ.

To find the geometric sector we need to compute the Ricci tensor:

Rµv = Γαµν,α − Γαµα,ν + ΓαµνΓ
β
αβ − ΓαµβΓβαν , (2.11)

as well as its contraction, the Ricci scalar

R = gµvRµv , (2.12)

where Γαµν,β ≡
∂Γαµν
∂β

and Γαµν are the Christoffel symbols:

Γαµν =
1

2
gαβ (gβµ,ν + gβν,µ − gµν,β) . (2.13)

After a straightforward but tedious calculation, plugging (2.10), (2.11) and (2.12)

into the Einstein field equations (1.4), the (00) and (ii) (i = 1, 2, 3) components yield:

H2 =
8πG

3
ρ− K

a2
,

3H2 + 2Ḣ = −8πGP − K

a2
.

(2.14)

Eliminating K/a2 gives:
ä

a
= −4πG

3
(ρ+ 3P ) , (2.15)

where dots are derivatives with respect to the cosmic time t. The set of equations (2.14)

and (2.15) are known as Friedmann equations.

The Einstein tensor Gµ
ν ≡ Rµ

ν − 1
2
δµνR satisfies the Bianchi identity:

∇µG
µ
ν ≡

∂Gµ
ν

∂xµ
+ ΓµαµG

α
ν − ΓανµG

µ
α = 0 . (2.16)
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From (2.16) the energy-momentum tensor must satisfy ∇µT
µ
ν = 0, producing the conti-

nuity equation:

ρ̇+ 3H(ρ+ P ) = 0 . (2.17)

The solutions for the Friedmann equations in the general case where P = wρ (with

w constant) are:

ρ ∝ a−3(1+w), a ∝ (t− ti)2/(3(1+w)) . (2.18)

For radiation (or any ultra-relativistic species), w = 1/3 and, therefore, in the radiation-

dominated period, ρ ∝ a−4 and a ∝ (t − ti)
1/2. This means that the energy density

of photons in an expanding Universe decreases faster than the volume. This happens

because the energy of the photons are redshifted by the expanding Universe.

The pressure of non-relativistic matter (dust) is negligible compared with its energy

density, therefore w = 0 in that case. Thus, in the matter-dominated era, the evolution

is given by ρ ∝ a−3 and t ∝ (t− ti)2/3.

A Universe passing through an era of accelerated expansion requires that ä > 0 in

equation (2.15). This is only possible if P + 3ρ < 0, or w < −1/3, meaning negative

pressure, which may be counter-intuitive. The SNe Ia observations strongly suggest that

our Universe is in fact passing through a phase of accelerated expansion, which would

imply that there must be a component with negative pressure. The central point of this

work is to understand how we can obtain tighter constraints on physical observables that

can bring some light into the mechanisms behind this component, or alternatives that can

explain this cosmic acceleration.

In the case where w = −1, then ρ = constant is a cosmological constant and the first

equation in (2.14) gives constant H and then a ∝ exp(Ht). The cosmological constant

component is a widely used solution for the problem of accelerated expansion, and it

seems to be able to explain all the observations so far.

2.2 The inhomogeneous Universe in a nutshell

Our Universe is not as simple as a homogeneous and isotropic spacetime with an

equally smooth matter distribution. Instead, the Universe is a complicated place where
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radiation, dark matter and baryons interact in many ways, in particular gravitationally,

leading to the formation of all kinds of structures, from atomic nuclei, atoms and molecules

(driven by nuclear and electromagnetic interactions) to star, galaxies and clusters (driven

by gravity).

Empirically, we know that matter is distributed in a peculiar way throughout space.

The way by which matter organized itself into the Large-Scale Structure (LSS) is a boom-

ing field of research. The LSS encapsulates a lot of information about fundamental fea-

tures of nature, and its detailed study is a promising way to shed light upon deep facts

concerning the underlying laws of physics.

If we look upon spherical regions large enough (∼ 200 h−1 Mpc), the contrast between

the matter density inside this sphere and the background density is much less than 1, and

we can use linear theory to obtain many useful results. This is the subject of this section.

Gauge-invariant variables

In GR we are allowed to choose any coordinate system. This freedom of choice,

or gauge freedom, is a fundamental feature of covariant theories of gravity, but it can

lead to difficulties interpreting the physical meaning of perturbations. In particular, it

may happen that with one choice of coordinate system we compute density perturbations

which, upon closer inspection, are not manifested in the physical observables.

Following the argument by Mukhanov [66], consider a homogeneous and isotropic

universe where the energy density is distributed evenly throughout the space, i.e. ρ(x, t) =

ρ(t). Since any coordinate system is allowed, we can make the particular choice such that

the time coordinate relates to the old one as t̃ = t + δt(x, t), where δt(x, t) � t. Thus,

the energy density in the new coordinate system ρ(t̃,x) = ρ(t(x, t̃)) will depend on x in

general. Furthermore, with this coordinate choice we generate perturbations which are

not present in the old coordinate system. Indeed, if we expand ρ(t),

ρ(t) = ρ(t̃− δt(x, t)) ' ρ(t̃)− ∂ρ

∂t
δt , (2.19)

we see that the energy density splits into a background term, ρ(t̃), plus a non-physical

perturbation, which is entirely due to our choice of coordinates. Conversely, it is also
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possible to remove a real perturbation by choosing a coordinate system such that the

hypersurfaces of constant energy density coincide with the hypersurfaces of constant time.

We could think that if gauge-invariant perturbations exist, we could check if the

perturbations due to a particular choice of coordinate system is fictitious or not. If these

gauge-invariant perturbations vanish in one coordinate system, they must vanish in any

coordinate system. Therefore, if there are perturbations in any coordinate system and

the gauge-invariant perturbations vanish, then these perturbations are fictitious and can

be removed by a change of coordinates.

Here we will briefly discuss gauge transformations. For a exhausting discussion on

this topic, see [60].

Classification of perturbations

The perturbed FLRW spacetime can be expressed in terms of the metric

ds2 = [g(0)
µν + δgµν(x

α)]dxµdxν . (2.20)

It is useful to define the conformal time

η ≡
∫

dt

a(t)
. (2.21)

The background metric is written as:

g(0)
µν = a2(η)[−dη2 + δijdx

idxj] . (2.22)

The perturbations on the metric δgµν can be split into scalar, vector and tensor pertur-

bations which, in the most general form, can be written, respectively, as

δgscalarij =

2a2φ B, i

B, i 2a2(ψδij + E, ij)

 (2.23)

for scalar perturbations,

δgvectorij =

 0 Si

Si a2(Fi,j + Fj,i)

 (2.24)

for vector perturbations, and

δgtensorij =

0 0

0 hij

 (2.25)
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for tensor perturbations. In the expressions above, Si and Fi are divergenceless (Si, i =

F i,i = 0), so each has two independent components, and hij is a traceless and transverse

tensor, i.e, hii = hij,i = 0. Since hij is a symmetric tensor (6 independent components),

the traceless condition eliminates one component and the transverse conditions eliminate

3 components, leaving two independent components. Therefore the scalar, vector and

tensor independent functions give ten independent functions.

The only perturbations we are interested in when treating cosmological inhomogeni-

ties are scalar perturbations, typically because they are the only ones that can be sourced

by energy density perturbations.

Gauge transformations

Consider the infinitesimal transformation:

xρ −→ x̃ρ = xρ + ξρ , (2.26)

where ξρ = (ξ0, ξi) and ξi = ξi⊥+ ζ ,i can be split into a 3-vector with zero divergence plus

the spatial derivative of a scalar function ζ. The metric calculated in the new coordinate

system will transform through the usual tensor transformation law. The perturbed part

transforms in a non-trivial way [66]:

δgαβ → δg̃aβ = δgαβ − g(0)
aβ,γξ

γ − g(0)
γβ ξ

γ
,α − g(0)

αδ ξ
δ,β . (2.27)

Using the transformation law (2.27) and the scalar part of the perturbed metric (2.23),

we easily find how the scalar perturbation functions transform under (2.26):

φ→ φ̃ = φ− 1

a

(
aξ0
)′
, B → B̃ = B + ζ ′ − ξ0

ψ → ψ̃ = ψ +
a′

a
ξ0, E → Ẽ = E + ζ .

(2.28)

That is, the way that scalar perturbations transform when we pass from the back-

ground metric to any other coordinate system is totally defined by the functions ξ0 and ζ.

We can choose an infinitesimal transformation whose effect is to vanish any of the scalar

functions (2.28). However, if we can make them all vanish, then in the new coordinates we

would not see any perturbation, and the homogeneous and isotropic background would be

exact. In other words, in the presence of perturbations there is a minimum set of physical

degrees of freedom that cannot be made to vanish by any choice of coordinates.
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It is easy to check that the combinations

Φ ≡ φ− 1

a
[a (B − E ′)]′ , Ψ ≡ ψ +

a′

a
(B − E ′) , (2.29)

are gauge invariant – i.e. they do not depend on the transformation (2.26). Thus, if

the functions (2.29) vanish in one coordinate system, then they vanish in any coordinate

system and there are no real perturbations.

The particular choice of ξ0 and ζ corresponds to a gauge choice. A widely used

gauge in the literature is to treat scalar inhomogeneities as fixed on the background,

corresponding to ξ0 = ζ = 0. In this gauge – the Newtonian gauge – the gauge invariant

functions are simply Φ = φ and Ψ = ψ.

In the Newtonian gauge, the invariant distance interval takes the form

ds2 = a2(η)
[
−(1 + 2φ)dη2 + (1 + 2ψ)δijdx

idxj
]
. (2.30)

2.2.1 Qualitative analysis of linear perturbations

The primordial Universe was a very smooth and hot plasma, which was also very

opaque: the mean free path of a photon one second after the Big Bang was only about the

size of an atom, while today a photon can travel almost freely over cosmological distances.

The initial conditions of the Universe are usually described by the mechanism known as

cosmic inflation. Although we are not sure if inflation really is the theory which describes

the primordial universe, it is the best explanation for the so-called horizon and flatness

problems. The horizon problem expresses the fact that the CMB is extremely isotropic,

despite the CMB photons arriving to us from different directions which, at the time of

decoupling, apparently never had the chance to have causal contact. This condition is

best expressed in terms of the conformal time η: this is also the maximum comoving

distance traveled by a photon since the Big Bang. When ηk � 1, the wavelength of a

perturbation is much larger than the maximum distance traveled by a photon since the

Big Bang, and no causal physics could have affected the evolution of such perturbations.

Inflationary theory proposes a mechanism by which the causal contact between ap-

parently disconnected places was possible in the very early Universe. This mechanism

consists of exponential expansion at the very beginning, and it can be caused by a scalar
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field – the inflaton [12]. It was also found, early in the development of inflation, that this

mechanism can also provide the initial conditions for cosmic perturbations. With the next

generation of LSS surveys we are going to impose stringent constraints on inflationary

models. In particular, the bispectrum measurement can impose interesting constraints on

the fNL parameter, which parameterizes the deviation from Gaussianity in the primordial

fluctuations [87]. Although the treatment of inflation is out of the scope of this work, we

will implicitly assume initial conditions for density fluctuations which are consistent with

inflation.

Before discussing perturbation theory quantitatively, let us briefly expose what one

might expect from the math. The dynamics of the density contrast responds mainly to

two forces, namely, pressure and gravity as represented schematically by:

δ̈ + [Pressure−Gravity]δ = 0 . (2.31)

If gravity dominates, one expects the density contrast to grow exponentially; on the other

hand, if pressure is not negligible, the density contrast oscillates in time.

Figure 2.1: The linear evolution of the gravitational potential φ.
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This qualitative picture leads naturally to three stages of evolution of cosmological

perturbations. At aeq ' 4× 10−4 the energy densities of radiation and matter were equal,

so before that time radiation dominates, and after that time it is matter which dominates.

As shown in Fig. (2.1), at early times (ηk � 1) all modes are outside the horizon and

therefore none of them evolve (they are frozen). At a ' 10−6 the small scale mode

k = 1.9h Mpc−1 enters the horizon and begins to decay (this happens because radiation

pressure tends to dilute perturbations). The modes which entered the horizon after the

matter-radiation show an evolution very different from that of the modes which entered

before. Finally, at late times, when the universe is matter dominated, all modes evolve in

the same way.

The period of transition between radiation and matter domination is described by

the transfer function, which is defined as the ratio between the potential for mode k well

after matter starts to dominate (alate) and the potential for an extremely large-scale mode

at the same time:

T (k) =
Φ(k, alate)

ΦLarge−Scale(k, alate)
. (2.32)

We will show that the large-scale solution is the primordial potential decreased by a factor

of 9/10. Thus,

Φ(k, alate) =
9

10
ΦPT (k) . (2.33)

In the above result, ΦP is the primordial potential (predicted by some inflationary model).

Roughly speaking, the transfer function encodes the information of how modes change in

the matter-radiation equality period.

After the matter era, all modes evolve equally and the evolution of perturbations

does not depend on k (although the initial conditions in the matter era do, as evidenced

by the scale-dependence of the transfer function), in such a way that the evolution is

determined by a function of the scale factor, or equivalently a function of redshift. Once

the potentials are set out, one expects matter to be attracted by regions where there is

more matter (overdense regions). The growth of such regions is described by the Growth

function, which is defined by the ratio between the potential at some time and its value

well before matter starts to dominate:

D(a)

a
=

Φ(a)

Φ(alate)
, (a > alate) . (2.34)
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Therefore, the evolution of the potential can be written as:

Φ(k, a) =
9

10
ΦP (k)T (k)

D(a)

a
, (a > alate) . (2.35)

If one could measure some quantity which is related to the potential, then the model

for inhomogeneities in the Universe could be compared to the data. We can relate the

potential to the density contrast through the Poisson equation, and the density contrast

is measured directly in LSS surveys – to be more precise, what we actually measure is the

matter power spectrum P (k) or the correlation function ξ(r).

The Fourier version of Poisson’s equation reads:

Φ =
4πGρma

2δ

k2
. (2.36)

Using (2.35), the background density of matter ρm = Ωmρcr/a
3 and the critical density

ρcr = (3/2)H2
0/(4πG), the density contrast is:

δ(k, a) =
3

5

k2

ΩmH2
0

ΦP (k)T (k)D(a), (a > alate) . (2.37)

Finally, the density contrast is related to the power spectrum as:

P (k, a) = 〈|δ(k, a)|2〉 , (2.38)

which is the measured quantity.

After the inflationary period, the expansion rate decelerates and perturbations start

to fall back inside the Hubble horizon H−1. The small scales enter the horizon before

suffering the effect of radiation pressure, which tends to dilute perturbations. There is

a value of k (keq ' 0.02 h Mpc−1) which happens to come into the horizon exactly at

the time of equality. This means that keq denotes the smallest scale that does not suffer

the effects of radiation pressure, and therefore is not diluted. Now, taking into account

the term k2 in Eq. (2.37), which comes from the Poisson equation, we conclude that

keq corresponds to the peak of the power spectrum: scales smaller than keq entered the

horizon before the equality and were diluted by pressure gradients; and scales larger than

that are suppressed by the k2 term.
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2.2.2 Quantitative analysis

The set of equations we need in order to characterize the photons and matter per-

turbations are the Boltzmann equations [33]:

Θ̇r.0 + kΘr.1 = −Φ̇,

Θ̇r.1 −
k

3
Θr.0 =

−k
3

Φ,

δ̇ + ikv = −3Φ̇,

v̇ +
ȧ

a
v = ikΦ,

(2.39)

where Θr.0 and Θr.1 are the monopole and dipole of radiation perturbations (photons +

neutrinos), and v is the velocity field of dark matter. These equations are complemented

by the relativistic Poisson equation for the potential, which is given by the time-time

component of Einstein’s equations:

k2Φ + 3
ȧ

a

(
Φ̇ +

ȧ

a
Φ

)
= 4πGa2 [ρdmδ + 4ρrΘr,0] , (2.40)

where ρdm is the dark matter density. We can also write an algebraic equation for the

potential, obtained through the combination of space-time Einstein’s equations with the

Poisson equation:

k2Φ = 4πGa2

[
ρdmδ + 4ρrΘr,0 +

3aH

k
(iρdmv + 4ρrΘr,1)

]
. (2.41)

This set of equations needs some remarks, since they are not the full set of Boltzmann

equations in all its glory [33], instead, they are result of two simplifications. First, the

baryons were neglected, since they compose only a small fraction of matter. Second,

the higher moments of photon perturbations (Θ2,Θ3, ...) were neglected. This latter

simplification is justified because before the recombination photons are strongly coupled

to matter. Since perturbations in non-relativistic matter are only described by the two

first momenta, which correspond to δ and v, then the photon perturbations are well

described by the two first momenta Θ0 and Θ1.

Analytical solutions for the full set of equations are impossible to obtain. Hence,

we will perform approximations and obtain analytical solutions valid at some times and

on some scales. These approximations are illustrated by Figure (2.2). On super-horizon

scales we can neglect terms multiplying k, since they will be kη times smaller than the
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other terms, and on super-horizon scales kη � 1. On scales which enter the horizon before

the equality, we know that the solution for the potential is a constant (after the transfer

function regime). At the radiation-dominated epoch we can neglect matter perturbations

and at the matter dominated epoch we can neglect radiation perturbations.

Figure 2.2: Regimes where it is possible to perform approximations and derive analytical

solutions. Figure extracted from [33]

Large scales

On large and super horizon scales, we can neglect terms involving k, and therefore

the set of Eqs. (2.39)-(2.41) reduces to the three equations:

Θ̇r,0 = −Φ̇, (2.42)

δ̇ = −3Φ̇, (2.43)

3
ȧ

a

(
Φ̇ +

ȧ

a
Φ

)
= 4πGa2 [ρdmδ + 4ρrΘr,0] . (2.44)

Therefore, at first approximation, the dynamics of perturbations does not depend on

the velocity field v nor on the dipole Θ1. This feature can be intuitively understood as

the independence of the large scale perturbations on local fluxes of matter and radiation.
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On large scales the small-scale fluxes cancel, and only the monopole term determines the

dynamics.

The first two equations lead δ − 3Θr,0 = const. The adiabatic initial conditions set

this constant to zero. Using it in the Einstein’s equation (equation (2.44)) yields:

3
ȧ

a

(
Φ̇ +

ȧ

a
Φ

)
= 4πGa2ρdmδ

[
1 +

4

3y

]
, (2.45)

where y ≡ a
aeq
≡ ρdm

ρr
will be the evolution variable. Transforming the derivative d

dη
=

H y d
dy

, the Einstein equation becomes:

yΦ′ + Φ =
y

2(y + 1)
δ

[
1 +

4

3y

]
=

3y + 4

6(y + 1)
δ , (2.46)

where the prime denotes derivatives with respect to y. Using δ′ = −3Φ′ and differentiating

with respect to y leads to:

Φ′′ +
21y2 + 54y + 32

2y(y + 1)(3y + 4)
Φ′ +

Φ

y(y + 1)(3y + 4)
= 0 . (2.47)

In terms of the variable u ≡ y3
√

1+y
Φ, the above equations become:

u′′ + u′
[−2

y
+

3/2

1 + y
− 3

3y + 4

]
= 0 . (2.48)

Integrating and exponentiating yield:

u′ = A
y2(3y + 4)

(1 + y)3/2
. (2.49)

With the definition of u we have:

y3

√
1 + y

Φ = A

∫ y

0

dy′
y′2 (3y′ + 4)

(1 + y′)3/2
, (2.50)

where A is a constant to be determined. The analytic solution for this equation is

Φ =
Φ(0)

10

1

y3

[
16
√

1 + y + 9y3 + 2y2 − 8y − 16
]
. (2.51)

This is the analytic form for the potential on superhorizon scales, neglecting baryons. The

important result that this solution gives us is that for large y, i.e, in the matter-dominated

era, the y3 term dominates and therefore Φ → 9
10

Φ0. That is, the largest superhorizon

scales are slightly suppressed as the Universe passes from radiation-dominated to matter-

dominated era. One might think that superhorizon scales should not be affected by what
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is happening inside the horizon since these scales are out of causal contact. Actually,

inside the superhorizon scales there are smaller scales which are in causal contact, then,

in some level perturbations on the largest scales will be affected. Eventually these scales

will enter the horizon deep in the matter-dominated era and thus the potential will remain

constant.

Small scales

The treatment of small scales can also be divided into two regimes: (i) super-horizon

modes crossing the horizon well within the radiation era, and (ii) sub-horizon modes

crossing the equality between matter and radiation eras. In the first regime, we can

neglect the matter perturbations, since although matter perturbations are influenced by

the potential, they do not influence the potential. Then, having a solution for the potential

neglecting matter, we can use it as source to the evolution of matter perturbations.

In order to find a solution for the potential in regime (i), we use the algebraic equation

(2.41). Neglecting matter, (2.41) reads:

Φ =
6a2H2

k2

[
Θr,0 +

3aH

k
Θr,1

]
. (2.52)

In the above equation, we used that H2 = 8πGρr/3 in the radiation era, where we

can also write H ' H0

√
Ωra−4 = H0

√
Ωra

−2. Thus, a2H is approximately constant in

the radiation era, and since η =
∫ a

0
da
a2H

, then η = 1/aH well within the radiation era.

Therefore, equation (2.52) along with the two equations for radiation perturbation,

Θ̇r,0 + kΘr,1 = −Φ̇

and

Θ̇r,1 −
k

3
Θr,0 =

−k
3

Φ ,

yield:
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− 3

kη
Θ̇r,1 + kΘr,1

[
1 +

3

k2η2

]
= −Φ̇

[
1 + k2η2

6

]
− Φk2η

3
(2.53)

and

Θ̇r,1 +
1

η
Θr,1 = −k

3
Φ
[
1− k2η2

6

]
. (2.54)

Combining these two equations and eliminating Θ̇r,1 and Θr,1, we end up with a

second order equation for the potential:

Φ̈ +
4

η
Φ̇ +

k2

3
Φ = 0 . (2.55)

This is the equation we want to solve with the initial condition that the potential is con-

stant (before crossing the horizon). Rewritten in terms of the variable u ≡ Φη, equation

(2.55) reads:

ü+
2

η
u̇+

(
k2

3
− 2

η2

)
u = 0 . (2.56)

We recognize the above equation as the spherical Bessel equation of order 1. The gen-

eral solution of this equation is a combination of the spherical Bessel function, j1(kη/
√

3)

and the spherical Neumann function, η1(kη/
√

3). The latter goes to infinity at small

argument, then it is not part of our solution. The spherical Bessel function of order 1 can

be written as:

Φ = 3Φp

(
sin(kη/

√
3)− (kη/

√
3) cos(kη/

√
3)

(kη/
√

3)3

)
. (2.57)

As we expect from our qualitative analysis, when the mode enters the horizon (kη . 1), it

decreases (due to radiation pressure) and oscillates (due to the gravitational instability of

baryons). Figure (2.4) shows two modes, k = 10 h Mpc−1 and k = 1 h Mpc−1, which enter

the horizon in the radiation era, the dashed-lines are the numerical solutions (including

matter perturbations) and the solid-lines are the analytical approximations. We see that

our analytical approximation starts to break for modes entering the horizon at a ' 10−5,

i.e., our analytical approximation is only valid deep in the radiation era, since the equality

happens at aeq4× ' 10−4.

We can use the potential as a source for the evolution of matter perturbations.

Combining the third and fourth equations in (2.39), we can write:
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Figure 2.3: The analytical (solid-line) and numerical (dashed-line) solutions for the poten-

tial. As soon as the mode enters the horizon in the radiation dominated era, it decreases

and oscillates. Figure extracted from [33].

Figure 2.4: The analytical (solid-line) and numerical (dashed-line) solutions for the matter

density contrast. Figure extracted from [33].
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δ̈ +
1

η
δ̇ = S(k, η) , (2.58)

where,

S(k, η) = −3Φ̈ + k2Φ− 3

η
Φ̇ . (2.59)

The solution for the above equation is [33]:

δ(k, η) = AΦp ln(Bkη) . (2.60)

Ref. [49] found the values A = 9.6 and B = 0.44 for the two remaining constants.

This solution can be interpreted as follows. The potential of a certain mode is frozen

until it enters the horizon and also the matter density contrast, this is expressed by

the constant term in (2.60), AΦp ln(B). After entering the horizon, the matter density

contrast grows, despite the radiation pressure, but the growth is logarithm (expressed by

AΦp ln(kη)) and slower than in the matter dominated era, where it grows as δ ∝ a. Figure

(2.4) shows our analytical solution (dashed-lines) and the numerical solution (solid-lines).

We see that when getting closer to the end of the radiation era, the density contrast starts

to grow faster.

Finally, we will obtain analytic solutions for the regime (ii), where small scales modes

are well within the horizon and cross the epoch of equality between matter and radiation.

We can also perform an approximation that will simplify our calculations: neglecting

the radiation perturbations. Arguably, when getting closer to the equality, eventually,

it will happen that the matter perturbations dominate over the radiation perturbations,

since radiation continuously dilutes on scales inside the horizon, despite the fact that ρr

is still larger than ρdm. In other words, the potential evolution is dominated by matter

perturbations even before the equality.

Therefore, using our prescription of turning three equations into one second order

equation, we can use the the third and fourth equations in (2.39) and the algebraic (2.41)

to obtain:

δ′′ − ik(2 + 3y)v

2aHy2(1 + y)
= −3Φ′′ +

k2Φ

a2H2y2
. (2.61)
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To obtain the above equation, one needs to consider that perturbations are well within

the horizon, which leads to aH/k � 1. We are again using the ratio between the scale

factor with its value at the equality, y, and primes denotes derivatives with respect to this

variable.

Realizing that the potential is much smaller than δ on sub-horizon scales, we can use

the equation

δ′ +
ikv

aHy
= −3Φ′ , (2.62)

to replace ikv/(aHy) by −δ′ and finally obtaining the Meszaros equation,

δ′′ +
2 + 3y

2y(y + 1)
δ′ − 3

2y(y + 1)
δ = 0 , (2.63)

which has as solution:

δ(k, y) = C1D1(y) + C2D2 , (2.64)

where D1(y) = y + 2/3 and D2(y) = D1(y) ln
[√

1+y+1√
1+y−1

]
− 2
√

1 + y. This solution is valid

on small scales and well after the mode entered the horizon, because at this regime the

growth is dominated by the matter perturbations. Let us express this as y � yH , where

yH is the ratio between the scale factor at the moment the mode k enters the horizon to

the scale factor at the equality. Thus, yH is a function of k.

In order to determine the two unknown coefficients C1 and C2, we need to match this

solution to our previous solution for modes crossing the horizon well within the radiation

era. For these modes, yH � y � 1. In order to match the two solutions, we need to

guarantee that the solutions are equal as well as their first derivatives:

AΦp ln(Bym/yH) = C1D1(ym) + C2D2(ym)

and

AΦp

ym
= C1D

′
1(ym) + C2D

′
2(ym) ,

where ym satisfies the condition yH � ym � 1. It is important to note that the Meszaros

equations do not depend on k, i.e., all modes evolve identically on the linear regime. It is

also important to note that the solution for the Meszaros equation can not be extrapolated

for late times, since at late times the energy budget of the Universe is dominated by dark
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Figure 2.5: Numerical solution for equation (2.65)

energy. In order to find a solution valid at late times we need to generalize the Meszaros

equation taking into account dark energy.

The y � 1 limit of the Meszaros equation, along with the redefinition of the coefficient

multiplying δ, 4πGρdm = (3/2)H2
0 Ωma

−3, and the continuity equation, lead to:

d2δ

da2
+

(
d ln(H)

da
+

3

a

)
dδ

da
− 3ΩmH

2
0

2a5H2
δ = 0. (2.65)

This equation is now written in terms of a instead of y. Figure (2.5) shows solutions for

equation (2.65) for three different cosmologies.

Eq. (2.64) shows that density fluctuations grow as the Universe expands – i.e., ini-

tially overdense regions become denser, and underdense regions tend to become even

more empty of matter. This growth of structures is the result of gravity attracting matter

towards the initial density peaks, and causing the Universe to become increasingly inho-

mogeneous. Moreover, it also generates peculiar velocites as matter clumps start to fall

into the gravitational potential wells of the overdense regions. This will be the subject of
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the next Chapter.
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Chapter 3

Redshift Space Distortions

We map the Large Scale Structure (LSS) of the Universe through the observed red-

shift of distant galaxies. The observed redshift is due to two ongoing processes, namely,

the Hubble expansion and structure formation. The latter is of great interest for present

and future surveys, since the information codified in structure formation can be crucial

to clarify the physics which drives the expansion, as well as the nature of gravity on

cosmological scales.

Due to peculiar velocities, the observed redshift is different from what one might

expect if it was purely due to the Hubble expansion. Instead, the observed redshift is

slightly more or less “red” depending on whether the observed galaxy is moving towards

or away from us. Hence, galaxies positions seem different from the true physical distance

along the Line Of Sight (LOS). In the linear regime, the velocities are small and galaxies

moving away from us along the LOS gain an additional redshift, and therefore we observe

them as if they were more distant. In the other hand, galaxies moving towards us along

the LOS suffer a slight blue shift, and therefore seem closer [42]. As a consequence, the

2D correlation function seems squashed along the perpendicular direction to the LOS –

see Fig. (3.1). In the non-linear regime, the effect is so drastic that overdensities seem

squashed along the LOS (this is the effect known as “Fingers of God”). Therefore, pecu-

liar velocities lead to anisotropies in clustering, the so-called Redshift Space Distortions

(RSD).

RSD are nothing but an observational effect of structure formation. The observed
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Figure 3.1: Illustration of the Kaiser effect. In the linear regime, galaxy clusters seem

squashed along the perpendicular direction whereas in the non-linear regime galaxy cluster

seem squashed along the LOS.

Figure 3.2: Left: Correlation function in real space as function of perpendicular sσ and

parallel sπ directions to the LOS. Right: The same plot with the Kaiser effect.

redshift carries information about the structure formation through the peculiar velocity

field, which is related to the gravitational potential in linear theory through the Euler
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equation:

v′ + aHv = −∇Ψ , (3.1)

where ′ denotes derivatives with respect to the conformal time η =
∫ t

0
dt′
a(t′) . The continuity

equation in Fourier space relates the linear peculiar velocity field to the linear density:

δ
′L(k, η) + ik.vL(k, η) = 0 . (3.2)

The linear density field grows with the growth function, D(η), δL(k, η) = D(η)δL0 (k),

where δL0 is the present time density field. Therefore, the linear peculiar velocity field is

connected to the density field as:

vL(k, η) =
ik

k2

dδL(k, η)

dη
=
ik

k2

d[D(η)δL0 (k)]

dη
=
iD(η)δL0 (k)k

D(η)k2

d[D(η)]

dη
=
iaHfk

k2
δL(k, η) ,

(3.3)

where in the last equality we used dη = da
aH(a)

and the growth rate definition:

f ≡ d lnD(a)

d ln a
. (3.4)

In this dissertation we will use a popular parameterization for the growth rate:

f ' Ωγ
m(a) , (3.5)

where γ = 0.5454 for ΛCDM. The γ parameterization for the growth rate is very useful in

order to test models of MG and will be important in the main results of this dissertation.

Figure (3.3) shows that the difference between the parameterization (3.5) and the exact

solution lies inside 1%.

Let us now show how the growth rate relates to the RSD term which arises when we

try to write the density contrast in redshift space. Hubble’s law states that the recession

velocity of a galaxy is proportional to its distance:

cz = H0d . (3.6)

However, Hubble’s law is not perfect, in the sense that the Universe is not perfectly ho-

mogeneous and isotropic. Due to peculiar velocities, the velocity we measure is displaced

from the Hubble law, and thus the distance we have access through observations is called

the distance in redshift space. This distance differs from the position in real space 1 as:

s = r +
(1 + zcos) v‖(r)

H (zcos)
r̂ , (3.7)

1Real space here means the positional space ignoring the redshift distortions.
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Figure 3.3: Comparison between the exact solution of equation (2.65) and the parame-

terization (3.5). The lower panel shows the fractional difference, where fγ = Ωγ
m, with

γ = 0.5454 and fexac is the exact solution.

where zcos is the “cosmological” redshift due to only the Hubble expansion at the galaxy’s

position; and v‖ is the component of velocity parallel to the LOS.

The volume element of redshift space is related to the one in real space through the

Jacobian:

J =

∣∣∣∣d3s

d3r

∣∣∣∣ =
s2

r2

ds

dr
=

(
1 +

(1 + zcos)v‖
H(zcos)r

)2(
1 +

1 + zcos
H(zcos)

∂v‖
∂r

)
. (3.8)

The Jacobian (3.8) can be simplified if we use the distant observer approximation:

v‖
R
� kv‖ ⇐⇒ kR� 1 , (3.9)

where R is the position of the observed galaxy and k is the scale of interest. Hence, the

term (1 + zcos)v‖/H(zcos)r is negligible and the Jacobian simplifies to:

J ' 1 +
(1 + zcos)

H(zcos)

∂v‖
∂r

. (3.10)
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Mass (and particle number) conservation implies that, in the mapping from real to

redshift space we have:

1 + δsm(s) =

∣∣∣∣d3s

d3r

∣∣∣∣−1

(1 + δm(r)) . (3.11)

The Fourier counterpart of this expression is:

δsm(k) =

∫
d3s δsm(s)eik.s =

∫
d3xeik·s{1 + δ(x)} −

∫
d3s eik·s

=

∫
d3x eik·s{1 + δ(x)} −

∫
d3x

∣∣∣∣ d3s

d3x

∣∣∣∣ eik·s
=

∫
d3 xeik·s{1 + δ(x)} −

∫
d3x

(
1 +

1

aH

∂vz(x)

∂z

)
eik·s

=

∫
d3x

(
δ(x)− 1

aH

∂vz(x)

∂z

)
eik·x+ikµvz/(aH), (3.12)

where the LOS was defined as the z direction and the cosine between the LOS and the

mode µ ≡ k.z. In this derivation we used the plane-parallel approximation, which allows

us to define a global LOS:

k · x ≈ k · z . (3.13)

The plane-parallel approximation is valid when the observed solid angle is small, in such

a way that we can assume that the LOS does not vary significantly inside the survey.

Therefore, under the distant observer and plane-parallel approximation, expression (3.12)

is a good approximation.

In order to derive the linear RSD correction in δ and v, we can drop out the second

term in the exponential of Eq. (3.12), since we are in the linear regime:

δs(k) =

∫
d3x

(
δL(x)− 1

aH

∂vLz (x)

∂z

)
eik·x (3.14)

= δL(k)−
∫
d3x

aH
eik.x

∂

∂z

(
−
∫

d3k′

(2π)3
e−ik

′.xiaHf
k′z
k′2
δL(k′)

)
= δL(k) +

∫
d3x

aH

∫
d3k′

(2π)3

k′2z
k′2
aHfei(k−k

′).xδL(k′)

= δL(k) + fµ2δL(k)

⇒ δs(k) = (1 + fµ2)δL(k) , (3.15)

where we used:

vLz (x) = vL(x) · ẑ =

∫
d3k

(2π)3
eik.xvL(k) · ẑ ,

with vL(k) = iaHfk
k2 δL(k). Therefore, the linear power spectrum in redshift space will be:

P s,L
m (k) = (1 + fµ2)2PL

m(k) . (3.16)
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The term due to RSD is the so-called Kaiser term [52]. In the case where galaxies

(or other tracers of the large-scale structure) have a linear bias with respect to the matter

density field we obtain:

P s,L(k) = (1 + βµ2)2b2PL
m(k) , (3.17)

where β = f
b

is called the redshift distortion parameter. To have a linear bias with respect

to the matter density field means that a given tracer of the dark matter density field, a

galaxy, for instance, does not present the same power spectrum one would expect for the

dark matter, but instead, the tracer’s power spectrum is biased with respect to the power

spectrum, Ptracer(k, z) = b2
tracer(k, z)Pm(k, z). Note that the RSD term does not depend

on bias in (3.16), since it is due to the peculiar velocities, which is in accordance with

the equivalence principle. Hence the growth rate f is a crucial observable to learn how

gravity drives structure formation on large scales and late times.

Let us estimate how significant is the effect of RSD. It is convenient to expand the

redshift-space power spectrum using a basis of Legendre polynomials L`(µ):

P s(k, µ) =
∑
`

P`(k)L`(µ) , (3.18)

where P` are the Legendre coefficients:

P`(k) =
2`+ 1

2

∫ 1

−1

dµP s(k, µ)L`(µ) . (3.19)

In the linear regime, only the monopole ` = 0, quadrupole ` = 2 and hexadecapole

` = 4 are non-vanishing ([42]):

Pg,`=0(k) =

(
1 +

2

3
β +

1

5
β2

)
Pg(k)

Pg,`=2(k) =

(
4

3
β +

4

7
β2

)
Pg(k)

Pg,`=4(k) =
8

35
β2Pg(k) ,

where Pg(k) = b2
gP

L
m(k). Now, suppose that Ωm0 = 0.3, ΩΛ = 0.7, z = 0.5 and bias

b = 1.5, then:
Pg,`=0

Pg
' 1.38 , (3.20)

which is a significant effect!

The modeling of redshift distortions on non-linear scales is a lot more complicated.

However, there are phenomenological approaches which have been shown to be good

52



approximations in both observations [84] and N-body simulations [38]. The model assumes

that the correlation function in redshift space, ξs, results from the convolution of the linear

correlation function in redshift space, ξsL, with the LOS component of a random isotropic

pairwise velocity distribution fp(v):

ξs
(
r//, r⊥

)
=

∫ ∞
−∞

ξsL
(
r// − v, r⊥

)
fp(v)dv , (3.21)

where r// and r⊥ are the parallel and perpendicular to LOS components of the separation

vector r. Convolution in real space becomes multiplication in Fourier space, so the power

spectrum in redshift space is just its linear version multiplied by the Fourier transform

f̂
(
k//
)

=
∫∞
−∞ fp(v)eik//vdv, where k// = kµ:

P s(k, µ) = f̂p(k//)P
s
L = f̂p(k//)(1 + βµ2)2PL(k) . (3.22)

There are two widely adopted choices for f̂p(k//): a Gaussian velocity distribution

[46, 73, 85] given by fp(v) =
[
(2π)1/2σ

]−1
exp [−(v/σ)2/2], and an exponential velocity

distribution [18, 43] given by fp(v) =
(
21/2σ

)−1
exp

(
−21/2|v|/σ

)
.

On linear scales, the quantity that galaxy redshift surveys have access to is the power

spectrum in Eqs. (3.16) and (3.17). It is easy to see that the growth rate f is degenerate

with the RMS fluctuations on scales of 8h−1 Mpc, the parameter σ8:

P s,L(k) = [b+ fµ2]2D2(z)σ2
8P0(k)

= [b2σ2
8(z) + 2bfσ2

8(z)µ2 + f 2σ2
8(z)µ4]P0(k) , (3.23)

where σ8(z) ≡ D(z)σ8, with D(z) the growth function, P0(k) ≡ P (k, z = 0)/σ8 and σ8

carries the meaning of the normalization of the power spectrum today (z = 0). For various

values of µ one can fit the data and measure the coefficients bσ8 and fσ8 (as well as the

product of the two). Fig. (3.4) shows fσ8 measurements from 6dFGS, 2dFGRS, SDSS

main galaxies, SDSS LRG, BOSS LOWz, WiggleZ, BOSS CMASS, VVDS and VIPERS

surveys at z < 1. That figure was extracted from [69], and their measurement is the solid

circle; the GR-ΛCDM prediction with amplitude given by minimizing their χ2 is plotted

in red together with predictions from some MG models.
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Figure 3.4: The current status of fσ8 measurements and theoretical predictions from GR

- ΛCDM and MG models f(R) [28], covariant Galileons , extended Galileons [30], DGP

[40] and models with varying gravitational constant. Figure extracted from [69].
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Chapter 4

Statistical tools

4.1 Inferential statistics

There are two kinds of statistics we use in cosmology. In order to compactify data

in a useful and informative way, we use descriptive statistics tools, such as the 2-point

correlation function. The correlation function and its Fourier counterpart, the power

spectrum, carry information about physical processes without the need for following each

particle of dark matter.

On the other hand, once we have measured the power spectrum or the correlation

function, we need a way to infer the set of cosmological parameters which better describe

the statistical properties we have measured. For this goal we use inferential statistics.

Examples of inferential statistics widely used in cosmology are Fisher matrix (analytical)

and Markov Chain Monte Carlo (MCMC) (numerical).

4.1.1 Bayesian statistics

The purpose of physics is to extract the so-called physical observables from nature.

Since in a certain experiment we often have to deal with variances due to random processes

that have some influence in the experiment, we have to repeat the experiment many times

and use statistical tools to extract the desired parameters.

In cosmology, the Universe itself is the experiment, and this Universe, the result

55



of one realization of an immensely complex random process, is the only one we have to

observe. This fact imposes a strong constraint on how accurately we are able to measure

physical observables and extract parameters in cosmology.

Since we are now starting a new era of large surveys, which will map huge volumes

of the sky with a large number of objects, the main source of uncertainty in this era is

the cosmic variance, or the limitation due to the survey finite volume.

In order to extract some information about the physics, we have to assume that the

Universe is a fair sample, i.e., that taking averages in volume is equivalent to averaging

between members of an ensemble. This assumption allows us to treat separate volumes

of the Universe as different realizations of the same random process.

In cosmology we widely use Bayesian statistics to make inferences. The key statement

given by the Bayes theorem is very simple, and follows from the conditional probability

of an event:

P (A|B) =
P (A ∩B)

P (B)
, (4.1)

and

P (B|A) =
P (B ∩ A)

P (A)
, (4.2)

where P (A ∩ B) = P (B ∩ A) is the joint probability of A and B, and P (A|B) is the

conditional probability of A given B. The Bayes theorem is just a trivial consequence of

(4.1) and (4.2):

P (A|B) =
P (B|A)P (A)

P (B)
(4.3)

and, equivalently,

P (B|A) =
P (A|B)P (B)

P (A)
. (4.4)

Considering equation (4.3), in the Bayesian jargon, P (A|B) is the posterior proba-

bility, P (B|A) is the likelihood probability, P (A) is the prior and P (B) is the evidence.

In cosmology, the Bayes theorem is used to derive the region in the parameter space

where we have some confidence that the true value of these parameters which better

describes the data lies. Then, we adapt equations (4.3) and (4.4) in the following way:

P (Θ|D) =
P (D|Θ)P (Θ)

P (D)
, (4.5)
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where Θ ≡ (θ1, ..., θn) is the parameter vector and D ≡ (d1, ..., dN) is the data vector. In

cosmology P (D) is usually a constant, since it is the probability of the data.

The multi-variate distribution of our desire in cosmology is the posterior P (Θ|D).

This distribution gives us the region in the parameter space where we expect to find the

true values of the parameters (or the values which better describe the data) with some

degree of confidence. P (Θ) is the prior and it is an essential ingredient of the Bayesian

approach, expressing the prior information that we have about that set of parameters.

This prior information on the parameters could be the results of previous experiments, or a

physical constraint, and it could take any form or shape – including analytical expressions

such as a multivariate Gaussian, or flat priors.

In order to calculate the posterior, we have to assume some analytical form for the

likelihood P (D|Θ). Usually we assume a Gaussian distribution

L(D|Θ) ≡ P (D|Θ) =
1√

2π detC
exp

(
−1

2
∆iC

−1
ij ∆j

)
, (4.6)

where ∆ ≡ D − DT (Θ) and DT is the theoretical expectation of D assuming the

parameter vector Θ. For instance, if the data are the power spectrum values at each

bin of k, then DT can be evaluated with CAMB or CLASS. C is the covariance matrix

of the data and can be determined by generating mocks reproducing the features of a

certain experiment, estimating the spectra and calculating the covariance between k bins

C ≡ Cov(p(ki), p(kj)) = 〈p(ki)p(kj)〉 − 〈p(ki)〉 〈p(kj)〉.

It is important to note here that the likelihood L(Θ) is Gaussian on data (e.g the

power spectrum), but not necessarily on the parameters. In fact, the likelihood depends

on the parameters in a very non trivial way, through some theory. The reason why we

are able to assume that the likelihood is Gaussian on the data can be derived from the

central limit theorem, which we will explore in the next section.

Once one has the likelihood function and the prior, the posterior probability can be

evaluated through Bayes theorem:

P (Θ|D) ∝ L(Θ|D)P (Θ). (4.7)

One could obtain (4.7) mainly in two ways: by calculating the value of P (Θ|D) for each

value of Θ in a grid (which can be computationally impractical), or by performing a

Markov Chain Monte Carlo (MCMC) analysis.
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The latter method, MCMC, is usually far more efficient. Indeed, the vast majority of

modern data analyses in cosmology is done using an MCMC algorithm. A typical analysis

can be computed with ' 5× 105 steps. If each step takes ' 1s, then the MCMC can take

' 5 days on a single desktop computer.

The central limit theorem

Let {X1, ..., Xn} be a random sample of independent and identically distributed ran-

dom variables of size n, i.e., a set of outcomes of an experiment with expected value µ

and standard deviation σ. For example, we can think of each Xn as being the outcome

of rolling a regular 6-sided dice. Consider the sample average

Sn =

∑n
i Xi

n
. (4.8)

The Central Limit Theorem (CLT) says that as n → ∞, then the sample average

Sn is drawn by a Gaussian distribution of mean µ and variance σ2/n, or, equivalently,

the random variable
√
n(Sn − µ) is described by a Gaussian distribution of mean 0 and

variance σ2.

A general statement of this theorem can be given as follows:

Theorem. Let X1, .., Xn be a set of independent random variables, each with finite

expectation value E[Xi] = µi and finite variance V ar(Xi) = σ2
i . Then the variable

Y =
n∑
i=1

Xi − µi
σ2
i

(4.9)

is distributed as a Gaussian with expectation value 0 and unit variance.

Note that this general statement does not require that the variables Xn be equally dis-

tributed.

The CLT plays a central role on parameter inference in cosmology, since in order to

perform an MCMC, we need to assume Gaussianity for the density contrast. Moreover,

the CLT is basically the reason why we have the more fundamental limitation in our

observations, that is, cosmic variance.

Having in hand the galaxy counts of a certain survey, in order to estimate the power

spectrum one needs to place these galaxies in a box and then construct a grid out of it.
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Then, every cell in this grid is associated with a density contrast, which is associated with

the number of galaxies that fits into the cell. Since we have a grid in Fourier space, we

are able to estimate the Spectra. The spectrum is estimated by counting the number of

modes which lie inside each bin of volume 4πk2∆k, where k is the radius of the spherical

shell in Fourier space and ∆k the bin width. We can see the density contrast for each

mode δk as a random variable of mean 0 and variance given by the power spectrum. Then,

according to the CLT, if we have a large enough number of modes inside each bin, the

mean will tend to be Gaussian distributed with mean 0 and standard deviation σδk/Nk,

where Nk is the number of modes in the bin where the spectrum is estimated.

In other words, the error of the power spectrum estimate in a certain bin is propor-

tional to the number of modes inside the bin. On large scales, only a few modes are used

to estimate the spectrum, so as a consequence, the estimation will have large error bars

– a consequence of cosmic variance.

4.1.2 The Fisher matrix

Although the MCMC method is very useful and relatively efficient to map the pos-

terior probability function, in order to perform forecasts, i.e., analyse the performance

of future experiments based on their features, e.g., volume and selection function, in the

case of galaxy surveys, we may need something faster and simpler. The Fisher matrix

(FM) provides us with a powerful analytic tool for this goal.

Intuitively, the Fisher matrix can be understood as a measure of how narrow the

posterior distribution P (Θ|D) is around its maximum. In order to obtain an expression

for the FM, we assume that the Likelihood L(D|Θ) is approximately Gaussian. Note

that the posterior distribution depends on the parameters in a non trivial way, through

the fiducial value for the data and then the result could be anything and not necessarily a

Gaussian distribution. The FM is defined as the expected value of the second derivative

of the likelihood logarithm, L = − lnL(D|Θ), at its maximum1 (maximum likelihood,

1It should be stressed that this is the Bayesian definition of Fisher matrix. Since we are not averaging

over data, as in the frequentist definition.
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ML),

Fij ≡
∂2L(θi)

∂θi∂θj

∣∣∣∣
ML

. (4.10)

Indeed, near the maximum (peak) of the likelihood the first derivative vanishes, and we

obtain, to second order:

L(θi) ' L(θML
i ) +

1

2

∂2L(θi)

∂θi∂θj

∣∣∣∣
ML

(θi − θML
i )(θj − θML

j ) , (4.11)

i.e., the FM gives the curvature around the peak of the likelihood.

There are two important features to note. The first is that, by definition, the FM is

the inverse covariance of the parameters, since we defined it as the measure of concavity of

a second order function, which is the same as assuming the posterior to be Gaussian near

its maximum (ML). Therefore, we are assuming Gaussianity for the parameters, which

may be a crude approximation in some cases. It is also possible to generalise the FM by

taking into account the higher order terms in the expansion (4.11) as done in [80].

The FM is very useful as a tool to perform forecasts, since it is easy and fast to

compute. Also, once we compute the FM for one set of parameters xi it is straightforward

to derive the Fisher matrix for another set of parameters yi = y(xi) which is related to

the first. Assuming a Gaussian likelihood for xi:

L = N exp (x̃iFijx̃j) , (4.12)

where we defined x̃i ≡ xi − xML
i . Expanding yi around the ML:

y(xi) ' y(xML
i ) +

∂y(xi)

∂xj

∣∣∣∣
ML

(xj − xML
j ). (4.13)

We can relate the two Gaussian variables ỹi ≡ yi − yML
i = ∂y(xi)

∂xj

∣∣
ML

(xj − xML
j ) =

J−1
ij (xj − xML

j ), where we defined Jij ≡ ∂xi
∂yj

∣∣
ML

. Thus, the Fisher matrices F (x) and F (y)

are related as

F (y) = JTF (x)J . (4.14)

Hence, if the Fisher matrix for the power spectrum is known, then by using (4.14)

it is easy to project into a set of parameters and obtain the expected error bars for a

experiment.
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In order to be able to calculate the FM for the power spectrum, we need to obtain

an expression for the FM in the Gaussian case. Dropping the irrelevant constant term,√
(2π)n, the likelihood logarithm reads

2L = ln detC + (x− µ)C−1(x− µ)t , (4.15)

where x is the data vector, µ = 〈x〉 the expected value of data and C = 〈(x− µ)(x− µ)t〉
is the data covariance. Using the well known identity ln detC = Tr(ln C), we can write:

2L = Tr
[
ln C + C−1D

]
, (4.16)

where we defined the data matrix D ≡ (x − µ)(x − µ)t. To obtain the FM we need to

take the derivative of equation (4.16) with respect to the parameters θµ. For the sake of

simplicity, let us denote derivatives with respect to θµ as

∂C

∂θµ
≡ ∂µC . (4.17)

Thus,

2∂µL = Tr
[
C−1∂µC + ∂µ(C−1)D + C−1∂µ(D)

]
=

= Tr
[
C−1∂µC−C−1∂µ(C)C−1D + C−1∂µ(D)

]
.

The second derivative yields,

2∂ν∂µL = Tr{C−1∂ν∂µ(C)−C−1∂ν(C)C−1∂µ(C) + C−1∂ν(C
−1)C−1∂µ(C)C−1D

−C−1[∂ν∂µ(C)C−1D− ∂µ(C)C−1∂ν(C)C−1D + ∂µ(C)C−1∂νD]

−C−1∂ν(C)C−1∂µD + C−1∂ν∂µD} , (4.18)

where we have used ∂µC
−1 = −C1∂µ(C)C−1.

In order to obtain the FM, we need to take the expected value of this expression and

evaluate it at the ML point. Various simplifications will arise if we note that

〈D〉 = 〈(x− µ)(x− µ)t〉 = C (4.19)

〈∂µD〉 = 〈∂µ(x)(x− µ)t + ∂µ(xt)(x− µ)〉 = 0 (4.20)

〈∂µ∂νD〉 = 〈∂ν∂µ(x)(x− µ)t + ∂µ(x)∂ν(x
t) + ∂ν∂µ(xt)(x− µ) + ∂µ(xt)∂ν(x)〉

= ∂µ〈x〉∂ν〈xt〉+ ∂µ〈xt〉∂ν〈x〉 = ∂µµ∂νµ
t + ∂µµ

t∂νµ = 0. (4.21)
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The last equality in (4.21) holds if µ is fixed. It is the case in our applications, since

µ will be the fiducial values of the parameters. Then, plugging (4.19) - (4.21) in (4.18),

we end up with

F [θµ, θν ] =

〈
∂2L

∂θµ∂θν

〉
=

1

2
Tr

[
C−1

∂C

∂θµ
C−1

∂C

∂θν

]
. (4.22)

Now, we are in a position to obtain the FM for the power spectrum. In order to

perform this calculation, let us turn to the continuum limit, where the covariance takes

the form:

C(x,x′) = ξ(x,x′) +
1

n̄(x)
δD(x− x′) , (4.23)

where n̄(x) is the mean density which may depend on the position and the second term

is called Poisson shot-noise. The correlation function ξ(x,x′) is the Fourier transform of

the power spectrum:

ξ(x,x′) =

∫
d3k

(2π)3
e−ik.(x−x

′)P (k,x). (4.24)

Therefore, we can rewrite the covariance as

C(x,x′) =

∫
d3k

(2π)3
e−ik.(x−x

′)

[
P (k,x) +

1

n̄(x)

]
, (4.25)

where the Dirac delta function is defined by:

δD(x− x′) =

∫
d3k

(2π)3
e−ik.(x−x

′). (4.26)

The inverse covariance can be approximated as [42]:

C−1(x,x′) =

∫
d3k

(2π)3
e−ik.(x−x

′)

[
P (k,x) +

1

n̄(x)

]−1

= δD(x− x′)φ(k,x) , (4.27)

where we defined φ(k,x) =
[
P (k,x) + 1

n̄(x)

]−1

.

Suppose we wish to calculate the FM for the power spectrum in a cell in phase-space

of volume Vµ = ∆3
µx∆3

µk. Then, the derivatives must be taken with respect to the power

spectrum inside this volume, which is the mean of P (k,x) in Vµ:

pµ = 〈P (k,x)〉µ. (4.28)

Let’s now use the definition of the functional derivative to write:

δP (k,x)

δpµ
= δk,xµ . (4.29)
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The symbol δk,xµ takes the value 1 if x and k are inside the phase space volume Vµ, and

0 if they are outside. The derivative of the covariance then reads:

δC(x,x′)

δpµ
=

∫
d3k

(2π)3
e−ik.(x−x

′)δk,xµ . (4.30)

Plugging (4.30), (4.27) and (4.25) in (4.22) and taking the continuum limit:

F [pµ, pν ] =
1

2

∫
d3xd3x′d3yd3y′

×δD(x− x′)φ(k,x)×
∫

d3k

(2π)3
e−ik.(y−x

′)δk,yµ × δD(y − y′)φ(k,y)

×
∫

d3k′

(2π)3
e−ik

′.(x−y′)δk,xµ

⇒ F [pµ, pν ] =
1

2

∫
d3x

∫
d3k

(2π)3

[
n̄(x)

1 + n̄(x)P (k,x)

]2

δµν . (4.31)

To obtain (4.31) we used the Stationary Phase (SP) approximation:

e−i(k−k
′)(x−x′) ' (2π)3δD(k − k′)δD(x− x′). (4.32)

A more complete derivation of this important result can be found in [2].

Suppose we construct a grid inside a box, that is, consider the volume covered by

a galaxy survey or a simulation, in real space, with a certain resolution. Now, take the

Fourier space counterpart of that grid. The result (4.31) can be rewritten in a more

intuitive way if we note that V =
∫
d3x and

∫
d3k→

∫
4πk2dk are, respectively, the total

volume in real space and the volume of a bin of width dk and radius k in Fourier space.

Also, Ṽ = (2π)3/V is the volume of a cell in Fourier space. Then,
∫

4πk2dk/(2π)3 ×∫
d3x = 4πk2dk/Ṽ is just the number of modes, Nk, which lie inside a spherical shell of

width dk and radius k in Fourier space (each mode define a cell in Fourier space):

F [pµ, pν ] =
1

2
Nk

[
n̄(x)

1 + n̄(x)P (k,x)

]2

δµν . (4.33)

Therefore, the result (4.31) is the amount of information in each k bin, and it de-

pends on the number of modes. If the limit of infinite signal-to-noise, n̄P → ∞, then,

F → 1
2
Nk and the number of modes inside each bin is the only limitation for the amount

of information we are able to extract from the power spectrum. This fundamental limi-

tation is called cosmic variance, and it is related to the finite volume (or finite number of

statistically independent modes) of the survey or simulation.
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The effective volume is defined as:

Veff =

∫
d3x

[
n̄(x)

1 + n̄(x)P (k,x)

]2

. (4.34)

It tells us how effectively we can extract information from the probed volume. If n̄P � 1,

then, Veff → V and the full information is being extracted from the survey volume.

Outside this limit, Veff < V , and the information is not effectively extracted from the

survey volume.

Since the FM is the inverse of the covariance, and the FM for the power spectrum is

diagonal, then the error bars in each bin are given by

σP (kµ) = 1/
√

(Fµµ)−1 =

√
1

1/2VeffVkµ( n̄
1+n̄P

)2
=

√
2

Nkµ

(
1 + n̄P

n̄

)
, (4.35)

where, Vk ≡ 4πk2∆k, with ∆k being the width of the spherical shell in Fourier space.

Note that the shell thickness must be chosen in order to contain all the correlated modes.

If the shells are too narrow, then different bins will contain correlated modes and the

covariance matrix 1/F will not be diagonal. On the other hand, if the shells are too thick,

then bins will contain uncorrelated modes. Both situations will lead to a poor covariance

estimate.

The expression (4.35) makes explicit the relation between large-scales and large er-

ror bars. On scales comparable to the volume probed, there are few pairs to average in

real space. The consequence would be having few modes Nk to average, and large vari-

ance between different estimates. This is nothing but a consequence of the central limit

theorem.

Summarizing, the FM formalism allows us to forecast the best possible error bars we

can obtain in a certain observation, since in its derivation we used some approximations,

namely, Gaussianity for the parameters, and the SP approximation. Gaussianity for the

power spectrum might be not a crude approximation because of the CLT. Anyway, one

could not obtain error bars smaller than those that can be derived from the inverse of the

FM: indeed, this is the statement of the Cramér-Rao theorem, which says that the variance

of an unbiased estimator θ̂ of a parameter estimated from n observations is bounded from

below by the Fisher information:

var(θ) = 1/F (θ). (4.36)
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In our case,

σP (kµ) = (1/
√
F )µµ. (4.37)

Equation (4.37) means: take the element µµ of the diagonal of the square root of the

inverse FM inverse. This is the marginalized error for the parameter µ that follows from

the FM.

It is easy to generalize these results to include RSD and bias of some tracer. The

generalization can be done simply by substituting the power spectrum in (4.31) by the

total power measured including the bias factor and RSD. The projection in any param-

eter can be obtained through the transformation (4.14). The marginalized errors can be

obtained by taking the diagonal of the inverse of the FM corresponding to the desired

parameter.

It is important to note that the FM method does not require the knowledge of the ML

estimator. Since we are simulating a future experiment, we can calculate the FM in some

fiducial value for the parameters and then the FM will provide us with contours around

these fiducial parameters. For instance, if we are interested in obtaining an estimation for

the error bars for the set of parameters θ = (ln Ωm, ln ΩΛ, ln β). Then we need to project

the FM for the power spectrum in the set θ as:

F [θi, θj]µ =
∂P (kµ)

∂θi

∣∣∣∣
(F )

F̄ (F )[P (kµ)]
∂P (kµ)

∂θj

∣∣∣∣
(F )

(4.38)

The subscript(superscript) (F ) means that we evaluate the expressions at the fiducial

values of the parameters, and we defined F̄ [P (kµ)] = 1
2

(
n̄

1+n̄P

)2
, the FM per unit of space

phase volume V Vµ = V
4π∆k2

µkµ

(2π)3 . In order to obtain the total amount of information in

each bin of k one needs to multiply the FM (4.38) by the phase-space volume factor

γµ = V Vµ. Each bin of k contributes for the information with γµF [θi, θj]µ, and the total

information is the sum of each individual contribution. Therefore, if an observation of the

power spectrum is made using some values of redshift z and k, then the total amount of

information will be a sum over both z and k.

The covariance matrix is easily obtained by inverting (4.38):

C = F−1 =


σ2

Ωm
σΩmΩΛ

σΩmβ

σΩmΩΛ
σ2

ΩΛ
σΩΛβ

σΩmβ σΩΛβ
σ2
β

 (4.39)
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The diagonal elements are the marginalized errors, and the non-diagonal elements express

the cross-covariance between parameters σij = ρijσiσj, where ρij is the correlation coef-

ficient between θi and θj. The errors σi are actually the marginalized relative errors per

unit of phase-space volume, since we define the vector parameter θ with the logarithm of

the parameters. Of course, to obtain the marginalized error, one only needs to divide σi

by γ
1/2
µ .

Now, it is easy to map the whole posterior for the set of parameters θ:

P (θ) = Nexp
[
(θi − θ(F )

i )Fij(θj − θ(F )
j )
]
. (4.40)

Often, is useful to plot the contour regions of confidence, which in the case of Gaussianity

will be ellipses in the θiθj – plane. The ellipse parameters can be calculated as follows:

a2 =
σ2
i + σ2

j

2
+

√(
σ2
i − σ2

j

)2

4
+ σ2

ij

b2 =
σ2
i + σ2

j

2
−

√(
σ2
i − σ2

j

)2

4
+ σ2

ij

tan 2θ =
2σij

σ2
i − σ2

j

(4.41)

All calculations involved in this recipe are very simple. To obtain the most realist

forecast possible, an accurate modelling of the survey is required. This modelling involves

the correct selection function n̄(z) and phase-space factor γµ for the desired survey. Note

that in order to plot the ellipses one needs to marginalize over one of the parameters, in

our 3x3 FM case above. This is trivially done by excluding the line and row referring to

the marginalized parameter from the covariance matrix (this is easily generalized for any

number of dimensions). I.e., marginalization only consists of removing from the covariance

(the inverse of the FM) the row and column referring to the marginalized parameters.

One further advantage of the FM method is the easy inclusion of priors. If we have

some information from another experiment and wish to use this information as a prior,

since we are using Gaussian posteriors, then we need to multiply the actual posterior by

the prior posterior. Or, equivalently, sum the actual FM with the prior FM F (π):

F (tot) = F + F (π) (4.42)
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Chapter 5

Power Spectrum estimators

We are entering an era in cosmology when huge amounts of data are expected to

come. In the case of galaxy surveys, the data will, for the most part, be available in the

form of angular positions (RA, DEC) and redshifts for extragalactic objects. However,

there are many issues to solve before one is able to extract the underlying physics from

this data: e.g., in the case of photometric surveys, such as J-PAS, there are uncertain-

ties associated with the redshift measurements; furthermore, if one desires to distinguish

between different tracers of the underlying CDM density field, there is the problem of

classifying the observed objects [35, 72].

The matter power spectrum (or, equivalently, the correlation function) is the main

observable in cosmology, and it encodes a lot of information regarding the process of

structure formation over a range of scales. In cosmological observations we do not observe

directly the matter power spectrum, but instead we identify, map and count galaxies,

which are biased tracers of the underlying CDM density field.

The primary problem of observational cosmology is how to translate galaxy counts in

the matter power spectrum in a way that the maximum of available information in these

observations is taken into account. One of the means towards this goal is to construct

optimal estimators for the matter power spectrum. The optimization of such estimates

must take into account features of the survey as selection function, properties of tracers,

as biases, and statistical noise as shot-noise and cosmic variance.
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Cosmic variance

Due to the large number of galaxies that the upcoming surveys will detect (the Euclid

survey will measure tens of millions of galaxies, for instance [56]), Poisson shot-noise will

not be the main source of uncertainty. On the contrary, due to the survey volume limit,

we will be living in an era of cosmic variance: the main limitations will come from the

statistical uncertainty due to the finite volumes of the surveys. Overcoming this limitation,

cosmic variance, is one of the main challenges for data analysis in the upcoming era.

Indeed, it is on large scales that our theory of gravity and structure formation is more

well understood, and reducing the error bars on these scales might be crucial in order to

distinguish between models.

Cosmic variance is a brute fact of cosmological observations, since we only have one

“experiment”, or one realization of the random processes which lead to the structures

we observe. Also, we have a limited sky area to observe, which means that there are

observables whose error bars are set by the number of modes which fit inside these scales.

One could imagine a survey which measures a large area of the sky and a vast range of

redshifts, but in order to estimate the power spectrum and compare it with theoretical

predictions, the bins of redshifts where the power spectrum is estimated must be divided

in such a way that one does end up with highly correlated regions at different stages of

evolution. In other words, we have, and will always have, a maximum (and finite) volume

to work with, at any given redshift range.

One promising approach in order to overcome this limitation is to identify different

tracers of large scale structure, which trace the underlying CDM density field with different

biases. The relative clustering between these tracers could add physical information, and

indeed the error bars for those observables can be reduced beyond the limitations imposed

by cosmic variance.

5.1 FKP estimator

In 1993 Feldman, Kaiser and Peacock published a prescription to estimate the power

spectrum from 3-D redshift surveys [37]. Their method relies upon the idea of optimal
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weighting, i.e., the density contrast is combined with a weight function which is determined

by imposing minimal variance – i.e., by imposing that the variance of the estimated

quantity (the power spectrum) is the inverse of the Fisher information. Let us now show

how this prescription works in detail.

Consider a 3-D survey in which we construct a grid where each cell has a position

r. Now, instead of using the density contrast directly, let us define the weighted density

contrast field F (r), given by:

F (r) =
w(r)[ng(r)− αns(r)][∫
d3r n̄2(r)w2(r)

]1/2 . (5.1)

In this expression n̄(r) is the mean number density of galaxies, which depends on the

particular selection criteria of the survey; w(r) is the weight function, which will be

adjusted to optimize the performance of the estimator; ns is a synthetic (random) catalog

which mimics the mean number density of the survey, and the parameter α normalizes

the synthetic catalog to n̄g(r). The denominator is just a normalization factor whose

function will become clear soon.

The next step towards an estimation of the spectrum is straightforward, since it is

just the Fourier transform of the correlation function ξF (r) = 〈F (r + r′)F (r′)〉. Thus,

taking the Fourier transform of F (r), squaring and taking the expectation value:

〈
|F (k)|2

〉
=

∫
d3r
∫
d3r′w(r)w (r′) 〈[ng(r)− αns(r)] [ng (r′)− αns (r′)]〉 eik·(r−r′)∫

d3r n̄2(r)w2(r)
. (5.2)

The densities of the real and synthetic catalogs, ng(r) and ns(r), are both drawn

from a Poisson distribution in each cell, with expected values given by n̄s(r) = 〈ns(r)〉
and 〈ng(r)〉 = n̄g(r)[1+δ(r)], where δ(r) is the density contrast field. In other words, the

synthetic catalog has no structure, whereas the real catalog has structure with variance

being the true power spectrum, P (k).

It is the quantity P (k) that we aim to estimate. Therefore, the two-point functions

are:

〈ng(r)ng (r′)〉 = n̄(r)n̄ (r′) [1 + ξ (r− r′)] + n̄(r)δ (r− r′)

〈ns(r)ns (r′)〉 = α−2n̄(r)n̄ (r′) + α−1n̄(r)δ (r− r′)

〈ng(r)ns (r′)〉 = α−1n̄(r)n̄ (r′).

(5.3)
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Note that the two first equations of (5.3) are just the familiar property of Poisson variables

〈n2〉 = n̄(n̄ + 1), but with the deviation in the first equation, ξ(r − r′) due to structure.

The last equation in (5.3) just says that the two-point processes are independent.

Therefore, plugging (5.3) into (5.2), we end up with:

〈
|F (k)|2

〉
=

∫
d3k′

(2π)3
P (k′) |G (k− k′)|2 + (1 + α)

∫
d3r n̄(r)w2(r)∫
d3r n̄2(r)w2(r)

, (5.4)

where:

G(k) ≡
∫
d3r n̄(r)w(r)eik·r[∫
d3r n̄2(r)w2(r)

]1/2 (5.5)

In other words, the power spectrum of the weighted density field is the convolution of the

true power spectrum, P (k), together with the Fourier transform of the weighted selection

function (and mask), G(k) – plus an additional term due to the discreteness of density

field, i.e., the shot-noise term.

At this stage, the original FKP paper [37] makes the approximation that |k| � 1/D,

where D characterizes the depth of the IRAS survey, which is the survey analyzed in

that paper. What this approximation is saying is that the survey volume constitutes

a fair sample of the Universe. In other words, the maximum scale at which there is a

local feature due to structure formation is much smaller than the survey size. Also, it

is assumed that the power spectrum is smooth on scales of interest. These assumptions

allow us to write

〈
|F (k)|2

〉
' P (k) + Pshot , (5.6)

where Pshot is defined as

Pshot ≡
(1 + α)

∫
d3r n̄(r)w2(r)∫

d3r n̄2(r)w2(r)
. (5.7)

Therefore, the estimator is just:

P̂ (k) = |F (k)|2 − Pshot . (5.8)

The final power spectrum is the average of this quantity in a shell in Fourier space:

P̂ (ki) ≡
1

Vki

∫
Vki

d3k′P̂ (k′) , (5.9)

where Vki is the shell volume of the bin ki.
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At this point there is no guarantee that the estimator is optimal. Optimality will be

achieved by choosing the weight function w(r) properly. In order to obtain the weight

function, let us consider the mean square fluctuation in P̂ (k):

σ2
P ≡

〈
(P̂ (k)− P (k))2

〉
=

1

V 2
k

∫
Vk

d3k

∫
Vk

d3k′
〈
δP̂ (k)δP̂ (k′)

〉
, (5.10)

where 〈〉 denotes average between different realizations. Assuming that the Fourier coeffi-

cients F (k) are Gaussian-distributed, we can write 〈δP̂ (k)δP̂ (k′)〉 = |〈F (k)F ∗(k′)〉|2 (see

appendix B of reference [37]). That is, we are assuming that the measured density field is

Gaussian. Indeed, in the simplest inflationary theory, long wavelength perturbations are

Gaussian.

A generalization of the steps leading to (5.4) yields:

〈F (k)F ∗(k + δk)〉 ' P (k)Q(δk) + S(δk) , (5.11)

where

Q(k) ≡
∫
d3rn̄2(r)w2(r)eik·r∫
d3rn̄2(r)w2(r)

, (5.12)

and to:

S(k) ≡ (1 + α)
∫
d3rn̄(r)w2(r)eik·r∫

d3rn̄2(r)w2(r)
. (5.13)

Therefore, 〈
δP̂ (k)δP̂ (k′)

〉
= |P (k)Q(δk) + S(δk)|2 . (5.14)

If the width of the shell over which we average is much larger than 1/D, then (5.10)

reduces to:

σ2
P (k) ' 1

Vk

∫
d3k′ |P (k)Q (k′) + S (k′)|2 . (5.15)

Thus, plugging the definitions (5.12) and (5.13) into the above expression, we get:

σ2
P (k)

P (k)
=
P (k)2

Vk

∫
d3k′

[
∫
d3n̄2w2]

∣∣∣∣ ∫ d3rn̄2w2

(
1 +

(1 + α)

n̄P (k)

)
eik

′.r

∣∣∣∣2 . (5.16)

For the sake of simplicity, let us call Ω(r) ≡ n̄2w2
[
1 + (1+α)

n̄P (k)

]
. Then,∫

d3k′
∣∣∣∣ ∫ d3Ω(r)eik

′.r

∣∣∣∣2 =

∫
d3k′

∫
d3rΩ(r)eik

′.r

∫
d3r′Ω(r′)e−ik

′.r′
(5.17)

= (2π)3

∫
d3rΩ(r)

∫
d3r′Ω(r′)δD(r − r′) = (2π)3

∫
d3rΩ2(r). (5.18)
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Therefore,

σ2
P (k)

P 2(k)
=

(2π)3
∫
d3r n̄4w4[1 + (1 + α)/n̄P (k)]2

Vk
[∫
d3r n̄2w2

]2 . (5.19)

The weight function which optimizes the estimator, w0, is obtained imposing that

the fractional variance (5.19) is stationary with respect to small departures from w0. By

imposing that and using α = 0, which means that the synthetic catalog is infinitely more

dense than the real catalog, one finds:

w0 =
1

1 + n̄(r)P (k)
. (5.20)

This is the FKP weight, and it has an intuitive interpretation. Rewritten as w0 =

n̄(r)/(P (k) + 1/n̄(r)), it is nothing but the inverse covariance weighted by the expected

mean number density at r. Thus, the FKP weight down-weights regions where there are

few galaxies, and up-weights regions with more galaxies, but in a way that depends on

the strength of the clustering that one wishes to measure.

5.2 Multi-tracer estimator

The CDM density field is accessible to us mainly through galaxies of various types

– indeed, it is believed that different types of galaxies trace the underlying CDM density

field in simple, but different ways. Although they are a discrete representation of the same

field, they trace that field with different biases, i.e., the galaxy power spectrum of each

type of galaxy is a biased version of the CDM power spectrum, Pg(k) = B2
gPm(k), where

B2
g can encode the particular way in which the galaxy of type g traces the underlying

field, in real or in redshift space.

Although the FKP estimator is optimum, it does not take into account the different

ways in which different types of galaxies can trace the CDM field. It was pointed out by

[63] that cosmic variance does not apply for RSD-related parameters when multiple tracers

are considered. The cosmic variance cancellation is significant especially on large-scales,

where the number of modes is limited by the finite volume of the survey.

Thus, it is of great interest for near feature cosmological measurements to know how

to extract information from different types of tracers. In this section we present the
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multi-tracer estimator, which was first introduced in [6].

Consider that the measured data are represented by di. This can be, for instance, the

density contrast in each cell of a grid. Let us assume that their expected value vanishes,

〈di〉 = 0. Then, the data covariance is Cov(di, dj) = 〈didj〉.

From these data we would like to extract some observable pµ, which is assumed to

be approximately Gaussian. Then, as we have shown in section (4.1.2), the Fisher matrix

reduces to:

Fµν =
1

2
Tr

[
C−1 ∂C

∂pµ
C−1 ∂C

∂pν

]
. (5.21)

Thus, in order to guarantee that we have an optimum estimator for pµ, the parameter

covariance must satisfy Cov (p̂µ, p̂ν) = F−1
µν , i.e., they must saturate the Cramér-Rao

bound, Cov (p̂µ, p̂ν) ≥ F−1
µν .

The first step in order to create such optimal estimators is to define the quadratic

form:

q̂µ ≡
∑
ij

Eij
µ didj −∆µ , (5.22)

where Eµ
ij are weights to be determined, and ∆µ subtracts any possible bias. Then, the

quadratic estimator is defined by:

p̂µ =
∑
α

F−1
µα q̂α . (5.23)

Therefore, in order for this estimator to be optimal, we require that the covariance of

the quadratic form should be equal to the Fisher matrix of the parameters, Cov(qµ, qν) =

Fµν . Thus, the weights Eij
µ must be chosen to guarantee this condition. In order to find

these weights, let us explicitly calculate the covariance of the quadratic form:

Cov (q̂µ, q̂ν) =
〈(
diE

ij
µ dj
) (
dkE

kl
ν dl
)〉
−
〈
diE

ij
µ dj
〉 〈
dkE

kl
ν dl
〉

= Eij
µ E

kl
ν (〈didjdkdl〉 − 〈didj〉 〈dkdl〉) .

(5.24)

Using the Gaussianity of di we can write the 4-point function in the above expression in

terms of the 2-point functions using the Wick theorem:

〈didjdkdl〉 = 〈didj〉 〈dkdl〉+ 〈djdk〉 〈dldi〉+ 〈dkdi〉 〈djdl〉

= CijCkl + CjkCli + CkiCjl .
(5.25)
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Plugging this into Eq. (5.24), we get:

Cov (q̂µ, q̂ν) =
∑
ijkl

Eij
µ E

kl
ν (CjkCli + CkiCjl)

= 2 Tr
(
Eij
µ CjkE

kl
ν Cli

)
.

(5.26)

It is clear from the above expression that the weights which make the covariance of

the quadratic form result in the Fisher matrix are:

Eij
µ ≡

1

2

∑
kl

C−1
ik

∂Ckl
∂pµ

C−1
lj . (5.27)

Now, considering the definition of the estimator given by Eq. (5.23), we get that Cov (p̂µ, p̂ν) =

F−1
αµ F

−1
βν Cov (q̂α, q̂β) = F−1

αµ F
−1
βν Fαβ = F−1

µν . Therefore, the estimator p̂µ saturates the

Crámer-Rao bound.

It is important to note that the Fisher matrix we are referring to when evoking the

Crámer-Rao bound is not the single-species Fisher matrix derived in (4.1.2), but rather

the multi-tracer Fisher matrix. In terms of the variables Pµ = n̄µpµ, the Fisher matrix

for logPµ is given by:

Fµν(~x,~k) =
1

4

δµνPµP(1 + P) + PµPν(1− P)

(1 + P)2
, (5.28)

where the indices µ, ν label the species and the total effective power is P =
∑

αPα.

Therefore, when using this prescription to construct an optimum multi-tracer estimator

of the power spectrum, pµ is the power spectrum of each species. Note that the estimator

(5.23) mixes information of all tracers when estimating the spectra of each tracer. The

full derivation of this Fisher matrix can be found in [2].
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Chapter 6

Constraining deviations from ΛCDM

on growth

In previous chapters we developed the tools we use in order to obtain the main results

of this dissertation. In this chapter we present these results.

The pipeline we used in this work is illustrated in Figure (6.1). First, we specify the

fiducial model, which means that, for each of the chosen redshifts we set the values of the

biases and of the densities of the tracers, as well as the geometry of the simulated box

(volume, dimensions, cell size and distance of the center of the box to the observer at the

origin). Then we generate 1500 log-normal mocks using that fiducial model, and a power

spectrum according to the fiducial cosmology. The next step is to estimate the power

spectrum from the simulated mocks and analyze the results, and this includes checking

the convergence of the covariance matrices, as well as comparing the variance (error bars)

obtained with the FKP and MT estimators. Finally, we perform a Markov Chain Monte

Carlo (hereafter MCMC) exploration of the Likelihood in order to derive constraints on

the target parameters, which we present in the next section. The log-normal code and

power spectrum estimator used in this work were developed by Raul Abramo, Lucas Secco

and Arthur Loureiro – see Ref. [5].

We have two goals in this analysis: first, we want to compare the potential of the FKP

and MT estimators to constrain the target parameters. This comparison is performed in
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Figure 6.1: Illustration of the pipeline used in this work. The detailed description of each

step is found in the following sections.

the context of the best case scenario of the JPAS survey1. In this comparison we use

two tracers of the underlying CDM field, namely, Luminous Red Galaxies (LRG) [91] and

Emission Line Galaxies (ELG) [62]. Second, compare the situation where the two tracers

are measured independently with the situation where we do not distinguish between them,

and thus treat the two populations as being one effective population, with an effective

bias and density.

Summarizing, we compare the FKP and MT estimators applied to two tracers and

then we compare two tracers to one effective tracer (in which case the two estimators

are identical). Therefore, in the context of the best scenario for JPAS, and regarding the

power to constrain the target parameters, we aim to answer two questions: (i) is there

any difference between the FKP and MT estimators? (ii) which observational strategy is

superior: treating two populations of galaxies as one effective population, or distinguishing

between them?

6.1 Survey specifications and fiducial model

In this exercise we assume the best case scenario for the J-PAS survey, in which it

will observe 8500 deg2 of the sky [77]. The simulated boxes were chosen in such a way to

1http://www.j-pas.org/
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Volumes of generated boxes

z V (×109 h−3

Mpc3)

0.2 0.48

0.35 1.2

0.5 2.0

0.65 2.9

Table 6.1: Redshifts and volumes of generated boxes in units of 109 h−3 Mpc3.

mimic the boxes cropped from inside an observed light cone, as illustrated in Fig. (6.2).

All boxes were generated with a redshift bin of ∆z = 0.2, for four values of redshift,

z = 0.2, z = 0.35, z = 0.5, z = 0.65, and with a rectangular geometry (as required for the

spectral analysis). The size of each dimension was calculated in the following way. The

Line Of Sight (LOS) is defined in such a way to be perpendicular to the x− y side of the

box at its center, which is at a comoving distance χ(z) from the observer, where χ(z) is

defined as:

χ(z) =
c

H0

∫ z

0

dz′

E(z′)
. (6.1)

In Eq. (6.1), E(z) =
√

Ωm(1 + z)3 + ΩΛ and H0 is the Hubble parameter today. Then,

the comoving volume within the redshift z is the one of a sphere of comoving radius

4/3π χ3(z) and the comoving volume of a spherical shell between the redshifts zi − 0.1

and zi + 0.1 is Vi = [V (zi + 0.1) − V (zi − 0.1)]. Therefore, the volume of a light cone

defined between the redshifts zi − 0.1 and zi + 0.1, in an observation of 8500 deg2 of the

sky is fsky V (zi), with fsky ' 0.2 being the fraction of the whole sky corresponding to

8500 deg2. We then generated boxes which have the same volumes as Vfi. The size along

the radial direction is taken to be simply ∆Z = χ(zi+0.1)−χ(zi−0.1), and the remaining

area, ∆X∆Y = V/∆Z, is equally distributed between the two remaining sizes, ∆X and

∆Y . In Table (6.1) we show the redshifts and comoving volumes of generated boxes. In

all calculations (distances, power spectrum, etc.) we use the fiducial cosmology Ωk = 0,

w = −1, Ωb = 0.0482, ΩCDM = 0.259, h = 0.677, ns = 0.96, ln 1010As = 3.085, zre = 10.

We consider two different species of galaxies, LRGs and ELGs. Each type of galaxy
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Figure 6.2: The simulated light cone. We generated boxes as if they were cropped from

inside an observed light cone which corresponds to an observation of 8500 deg2 of the sky.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

z

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

b(
z)

LRG
ELG

Figure 6.3: The redshift evolution of LRGs and ELGs biases.
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Densities (×10−3 h3 Mpc−3 )

z ELG LRG

0.2 38.4 2.6

0.35 25.14 2.09

0.5 11.8 1.56

0.65 6.7 0.906

Biases

z ELG LRG

0.2 0.924 1.870

0.35 0.98 2.0

0.5 1.041 2.108

0.65 1.096 2.21

Table 6.2: Left: fiducial number densities of LRG and ELG in units of 10−3 h3 Mpc−3.

Right: fiducial biases of LRG and ELG.

has a fiducial bias given by [77]:

b(z) =
b0

D(z)
, (6.2)

where b0 = 0.84 for ELGs, b0 = 1.7 for LRGs, and D(z) is the growth function, which can

be expressed as:

D(z) = exp

(∫ 0

z

f(z)

1 + z′
dz′
)
, (6.3)

where f(z) = Ωγ
m(z) and γ is the growth index. Figure (6.3) shows the redshift evolution

of the biases (6.2) for the fiducial model Ωm0 = 0.307, ΩΛ = 0.692 and γ = 0.5454. For

the galaxy densities, we used the values found in reference [77]. Table (6.2) summarizes

the densities for each species in each redshift bin (left) and the fiducial biases (right).

We measured the redshift-space monopole, P0(k, z), and the quadrupole, P2(k, z),

from the log-normal mocks, which have as fiducial models:

P fid
0 (k, z) =

[
b2(z) +

2

3
f(z)b(z) +

1

5
f 2(z)

]
D2(z)P (k, z = 0) , (6.4)

and

P fid
2 (k, z) =

[
4

3
f(z)b(z) +

4

7
f 2(z)

]
D2(z)P (k, z = 0) . (6.5)

In the above expressions, P (k, z = 0) is the CAMB2 (Code for Anisotropies in the Microwave

Background) [58] power spectrum at z = 0 calculated with the fiducial cosmology. Notice

that in these calculations we employ only the linear power spectrum, which scales with

the growth function.

2https://camb.info/
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6.2 Log-normal mocks

In order to be able to measure cosmological parameters we need to first compute the

covariance matrices, Cij ≡ Cov(P (ki), P (kj)) = 〈P (ki)P (kj)〉. Therefore, we need a large

number of realizations of the density field, in order to guarantee the convergence of the

covariance matrix (whose dimensionality can be quite high as we increase the number of

tracers). Ideally, we would need to construct realistic halo mocks and then galaxy mocks,

perhaps using N-body simulations. However, this is so computationally expensive that

this kind of procedure is probably not viable in the near future.

A fast and cheap alternative to N-body simulations is the log-normal approximation.

This approach is widely used in the literature, and relies on the fact that the PDF of the

density contrast field in N-body simulations follows approximately a log-normal distribu-

tion [15, 22, 23, 25, 82]. This rough agreement is not only found in simulations, but also

in data [22].

The log-normal density contrast field can be written as:

δLN(x) = eδG(x)−σ2
G/2 − 1 , (6.6)

where δG(x) is drawn from a normal distribution and σ2
G ≡ 〈δ2

G(x)〉 ensures that 〈δLN(x)〉 =

0 [23]. Note that the definition (6.6) implies that δLN(x) ≥ −1, which is not true if the

density field is Gaussian.

It is easy to show that the correlation function of the Gaussian variable is related to

the one for the log-normal variable via [23]:

ξG = ln[ξLN + 1]. (6.7)

Therefore, in order to create log-normal density fields, we employ the following recipe.

First, we run CAMB and obtain the physical power spectrum, Pph(k). Then, we Fourier

transform Pph(k) to obtain the physical correlation function ξph, which is assumed to

be log-normal, ξph = ξLN . The Gaussian correlation ξG can then be obtained via (6.7).

The next step is to Fourier transform ξG and thus obtain the Gaussian power spectrum,

PG(k). This power spectrum is used to generate a Gaussian field on a grid in Fourier

space, such that δG(k) ∼ N (µ, PG(k)). We then Fourier transform the field back to real

space, obtaining the Gaussian density field δG(x).
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Figure 6.4: An x− y slice from a simulated log-normal density contrast field.

Figure 6.5: Comparison between fiducial monopole and the mean of 1500 realizations for

z = 0.5. The lower panel shows the relative difference between them.
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Finally, we generate biased log-normal maps by exponentiating the Gaussian field,

δ
(LN)
µ + 1 = exp[bµδG− b2

µσ
2
G/2]. The galaxy mock is achieved by performing a Poissonian

realization of the density field, δ(LN), so each cell has a number of galaxies nµ(x) ←−
P{n̄µ[1 + δ

(LN)
µ ]}, where P{λ} is a Poissonian distribution with expected value λ.

Figure (6.5) shows the comparison between the mean measured monopole of 1500

log-normal mocks and the fiducial model given by (6.4). Figure (6.4) shows an x− y slice

from a simulated log-normal mock. Despite the agreement between fiducial model and

measured monopole, it is clear from Figure (6.4) that log-normal mocks do not reproduce

properly the observed large-scale structures, like filaments and sheets. Furthermore, Fig.

(6.4) shows that the log-normal monopole begins to increasingly deviate from the fiducial

monopole calculated with CAMB using the halo fit at k ≥ 0.1h Mpc−1. In this work we use

log-normal mocks only within the linear regime (k < 0.1h Mpc−1).
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6.3 Analysis of the simulated data

The first step in the analysis is to measure the monopole and quadrupole from the log-

normal mocks. In all of the following plots we take z = 0.5 as example. Figure (6.7) shows

the theoretical and measured monopole, P0, and quadrupole, P2, while comparing the

measurements obtained on the basis of the FKP and MT estimators. These are our “data”.

Figure (6.6) shows the correlation matrices, Corr[P`(ki)P`(kj)] = Covij/
√
CoviiCovjj,

with the upper triangular being the FKP correlation matrix, and the lower triangular the

MT correlation matrix. Figure (6.8) shows the comparison between the relative error from

MT and FKP. The correlation matrices show that FKP and MT estimator have equal

performances in this model (box volume, biases, densities, etc.) and also the effective

tracer correlation matrix is similar to the correlations for LRG and ELG. The relative

error in all cases is very similar. In short, this set of figures shows that all cases deliver

similar errors and at this point there is no indication that the MT estimator performs

better than the FKP estimator nor that the two-tracers approach performs better than

the one tracer approach.

In order to estimate the covariances, we generated 1500 galaxy mocks for each redshift

slice. The number 1500 was chosen based on the convergence of the covariance matrices.

Figure (6.9) shows the criterium adopted for checking the convergence of the covariance

matrices. The criterium was to establish an upper bond for the relative difference ∆ ≡
Covm/Covm+300−1 between the diagonal of the covariance estimated with m and m+300

realizations. We assumed that, when the relative difference between m and m + 300

realizations falls within a tolerance of 5%, then the covariance matrix has converged for

the purposes of this work. Furthermore, Ref. [86] shows that, in order to obtain a precision

of 5% in parameter estimation, it is required Ns > 200 realizations if the number of data

points is � 100. In our case, we are using on each redshift slice 10 data points, and

Ns = 1500 realizations.
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Figure 6.6: From top to bottom and left to right: correlations matrices of P eff
0 , P eff

2 ,

PLRG
0 , PLRG

2 , PELG
0 and PELG

2 at z = 0.5. In all matrices the upper triangular is FKP

and the lower triangular is MT.
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Figure 6.7: From top to bottom and left to right: measured and theoretical P eff
0 , P eff

2 ,

PLRG
0 , PLRG

2 , PELG
0 and PELG

2 at z = 0.5. The filled regions are the error bars from FKP

and MT.
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Figure 6.8: From top to bottom and left to right: relative errors from FKP and MT

estimators of P eff
0 , P eff

2 , PLRG
0 , PLRG

2 , PELG
0 and PELG

2 at z = 0.5.
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Figure 6.9: The relative difference between the diagonal covariances of m and m + 300

realizations, ∆ ≡ diag(Cov)m+300/diag(Cov)m− 1. From top to bottom and left to right,

these figures refer, respectively, to P FKP
0,LRG, P FKP

0,ELG, PMT
2,LRG, PMT

2,ELG, where the superscript

refers to the method used for estimating the multipoles.
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6.4 Propagating errors on target parameters

The parameters we are interested in are γ and c1, which parameterize the growth

rate as

f(k, z, γ) = Ωγ
m(z) + c1(k − k0) , (6.8)

where k0 is a pivot value arbitrarily chosen at the center of the k range we are using in

the analysis, namely, k = 0.05 h Mpc−1. Therefore, we are assuming that c1 encodes

all the information in the scale dependence. It is important to stress that we aim to be

as model-independent as possible in this analysis, so we are not interested in measuring

scale-dependence for any particular model. Note that this parameterization only assumes

that the deviation from scale-independence should be small in the range of k we are using

in the analysis, namely krange = {0.006, 0.016, . . . , 0.096}, which lies well inside the

linear regime.

In order to propagate these errors for our target parameters, γ and c1, we run an

MCMC code based on the Metropolis-Hastings algorithm [45], which maps the posterior

distribution for the parameters via the χ2,

χ2 =
∑
`=0,2

Nk∑
ij=1

∆i
`(C

ij
` )−1∆j

` , (6.9)

where Cij
` = 〈PD

` (ki)PD
` (kj)〉 is the covariance matrix of the multipole ` (not to be

mistaken for the coeficients C` of CMB power spectrum) and ∆i
` = PD

` (ki)−P T
` (ki) is the

difference between theoretical expectation and data for each multipole `. The posterior

distribution is:

P (Θ) = exp

[
−1

2
χ2(Θ)

]
× P prior(Θ) , (6.10)

where P prior reflects a prior expectation we have regarding the range where the parameters

which describe the data lie, and Θ = {θ1, ..., θN} is the parameter vector. In this exercise

we are using a flat prior, i.e,

P (θi) =

 1 if θmini ≤ θi ≤ θmaxi

0 otherwise

When using two tracers, the theoretical vector is the stack of each tracer multipole

evaluated at Θ, P T
` (Θ) ≡ {P`,LRG(Θ), P`,ELG(Θ)}, where the monopoles are assumed to
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take the form given by the Kaiser formula:

P0,G(k, z, γ) =

[
b2
G(z) +

2

3
f(k, z, γ)bG(z) +

1

5
f 2(k, z, γ)

]
D2(k, z, γ)P0(k) , (6.11)

and the same for the quadrupoles:

P2,G(k, z, γ) =

[
4

3
b2
G(z)f(k, z, γ) +

4

7
f 2(k, z, γ)

]
D2(k, z, γ)P0(k) , (6.12)

where G = {LRG,ELG}. Notice that D(k, z) is now allowed to be scale-dependent

through the parameterization (6.8),

D(k, z, γ) = exp

[∫ 0

z

f(k, z, γ)

1 + z′
dz′
]
, (6.13)

and P0(k) ≡ P (k, z = 0) is the power spectrum today. In this example we vary in the

MCMC only the set of parametets Θ = {bLRG, bELG, γ, c1}.

We aim, in particular, at contrasting various approaches to constrain the parameters

γ and c1. First, we fixed the cosmology and performed an MCMC with the two tracers

(LRG, ELG) and both the monopoles and quadrupoles, estimated with different combi-

nations of estimators – e.g., MTMT means that the monopole and quadrupole were both

estimated with the MT estimator; and so forth.

We also perform an MCMC using only one effective tracer which is the combination of

LRG and ELG. The bias and density of the effective tracer are the following combinations

of densities and biases of LRG and ELG:

beff (z) =
n̄LRG(z)bLRG(z) + n̄ELG(z)bELG(z)

n̄LRG(z) + n̄ELG(z)
, (6.14)

and

n̄eff (z) = n̄LRG(z) + n̄ELG(z) . (6.15)

Therefore, the total number of MCMC runs with fixed cosmology is 4 redshift slices

× 2 tracers × 4 combinations of estimators, and for the single effective tracer we have 2

redshift slices, for a grand total of 34 runs. Note that when performing the MCMC using

the effective tracer it is irrelevant which estimators were used, since in that case the two

estimators deliver precisely the same results – by definition, see Ref. [5].

Figure (6.10) shows the comparison between different combinations of estimators

for estimating the monopole and quadrupole, for instance, mtmt means that both the
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Figure 6.10: Comparison between different combinations of estimators (fkpfkp,fkpmt,

mtfkp, mtmt) in the two-tracers case. The upper plots refer to z = 0.2 (left) and z =

0.35 (right). The lower plots refer to z = 0.5(left) and z = 0.65 (right). Dashed-lines

indicate the fiducial value of parameters. Tables (6.3), (6.5), (6.7) and (6.9) summarize

the constraints illustrated here.
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Two-tracer constraints at z = 0.2

Method bLRG bELG γ c1

FKPFKP 1.891+0.027
−0.031 0.921+0.014

−0.015 0.57+0.13
−0.10 0.67+0.85

−0.86

FKPMT 1.889+0.028
−0.030 0.921+0.014

−0.015 0.59+0.12
−0.12 −0.82+0.80

−0.93

MTFKP 1.885+0.030
−0.028 0.919+0.016

−0.014 0.57+0.13
−0.11 −0.80+0.82

−0.91

MTMT 1.887+0.028
−0.029 0.921+0.015

−0.015 0.59+0.13
−0.11 −0.76+0.95

−0.80

Table 6.3: Constraints obtained with two-tracers and different combinations of estimators

at z = 0.2. In this regime there is no significant difference between estimators.

One tracer constraints at z = 0.2

Method beff γ c1

FKPFKP 0.98+0.016
−0.018 0.40+0.17

−0.15 −1.1+2.2
−2.3

FKPMT 0.98+0.016
−0.018 0.41+0.16

−0.15 −1.1+2.2
−2.4

MTFKP 0.98+0.016
0.018 0.40+0.17

−0.15 −1.1+2.3
−2.3

MTMT 0.98+0.016
−0.017 0.40+0.17

−0.15 −1.2+2.3
−2.3

Table 6.4: Constraints obtained with one effective tracer and different combinations of

estimators at z = 0.2. In this regime there are no significant differences between estima-

tors.

Two-tracer constraints at z = 0.35

Method bLRG bELG γ c1

FKPFKP 2.028+0.023
−0.022 0.991+0.0084

−0.0090 0.524+0.075
−0.071 0.37+0.56

−0.61

FKPMT 2.027+0.023
−0.022 0.990+0.0090

−0.0082 0.536+0.071
−0.076 0.36+0.59

−0.60

MTFKP 2.0280.022
0.023 0.991+0.0093

−0.0083 0.526+0.075
−0.073 0.41+0.56

−0.65

MTMT 2.027+0.022
−0.023 0.991+0.0081

−0.091 0.528+0.079
−0.070 0.37+0.61

−0.60

Table 6.5: Constraints obtained with two-tracers and different combinations of estimators

at z = 0.35. In this regime there is significant difference between estimators.
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One tracer constraints at z = 0.35

Method beff γ c1

FKPFKP 1.069+0.011
−0.011 0.63+0.19

−0.19 2.5+2.3
−2.5

FKPMT 1.068+0.012
−0.010 0.63+0.19

−0.19 2.5+2.4
−2.4

MTFKP 1.068+0.011
0.011 0.63+0.19

−0.19 2.5+2.4
−2.4

MTMT 1.068+0.011
−0.011 0.64+0.18

−0.20 2.5+2.3
−2.4

Table 6.6: Constraints obtained with one effective tracer and different combinations of

estimators at z = 0.35. As expected, there is no significant difference between estimators

in this case.

Two-tracer constraints at z = 0.5

Method bLRG bELG γ c1

FKPFKP 2.09+0.029
−0.025 1.028+0.01

−0.009 0.653+0.087
−0.083 0.63+0.48

−0.48

FKPMT 2.092+0.028
−0.027 1.028+0.01

−0.009 0.625+0.085
−0.084 0.64+0.48

−0.46

MTFKP 2.089+0.029
−0.025 1.029+0.01

−0.01 0.665+0.079
−0.091 0.68+0.49

−0.49

MTMT 2.091+0.027
−0.028 1.029±0.009 0.662+0.08

−0.091 0.72+0.52
−0.52

Table 6.7: Constraints obtained with two-tracers and different combinations of estimators

at z = 0.5. In this regime there is significant difference between estimators.

One tracer constraints at z = 0.5

Method beff γ c1

FKPFKP 1.161+0.096
−0.084 0.66+0.15

−0.14 2.1+2.7
−2.8

FKPMT 1.161+0.094
−0.087 0.67+0.15

−0.15 2.0+1.8
−1.7

MTFKP 1.161+0.095
0.085 0.67+0.15

−0.15 2.2+1.6
−1.8

MTMT 1.161+0.097
−0.082 0.67+0.15

−0.15 2.1+1.7
−1.8

Table 6.8: Constraints obtained with one effective tracer and different combinations of

estimators at z = 0.5. As expected, there is no significant difference between estimators

in this case.
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Two-tracer constraints at z = 0.65

Method bLRG bELG γ c1

FKPFKP 2.148+0.053
−0.045 1.066+0.023

−0.019 0.70+0.13
−0.12 0.30+0.40

−0.42

FKPMT 2.145+0.052
−0.044 1.065+0.023

−0.018 0.71+0.13
−0.12 0.32+0.39

−0.43

MTFKP 2.147+0.055
−0.044 1.066+0.023

−0.018 0.70+0.12
−0.13 0.26+0.40

−0.45

MTMT 2.143+0.057
−0.042 1.066+0.023

−0.019 0.71+0.12
−0.14 0.28+0.38

−0.47

Table 6.9: Constraints obtained with two tracers and different combinations of estimators

at z = 0.65. In this regime there is significant difference between estimators.

One tracer constraints at z = 0.65

Method beff γ c1

FKPFKP 1.144+0.028
−0.020 0.99+0.20

−0.19 0.23+0.85
−0.78

FKPMT 1.145+0.027
−0.021 0.99+0.19

−0.20 0.28+0.80
−0.82

MTFKP 1.144+0.027
0.021 1.00+0.19

−0.20 0.27+0.8
−0.83

MTMT 1.145+0.026
−0.022 1.01+0.19

−0.20 0.27+0.80
−0.83

Table 6.10: Constraints obtained with one effective tracer and different combinations of

estimators at z = 0.65. As expected, there is no significant difference between estimators

in this case.
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Figure 6.11: Constraints obtained with the one (effective) tracer approach. The upper

plots refer to z = 0.2 (left) and z = 0.35 (right). The lower plots refer to z = 0.5(left)

and z = 0.65 (right). These constraints were obtained with multipoles estimated with the

MT estimator.
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monopole and quadrupole were estimated with the MT estimator. The contours repre-

sent the 1- and 2-σ confidence regions. Dashed lines indicate the fiducial value of these

parameters. In Tables (6.3) - (6.10) are found the measured parameters with the 1 − σ
errors.
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Figure 6.13: Comparison between error bars (1-σ) of one effective and two-tracers ap-

proach for γ (above) and c1(bellow).

Fig. 6.11 shows the contours for the effective tracer case. Finally, Fig. (6.12) shows
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Figure 6.14: Comparison between error bars (1-σ) of one effective and two-tracers ap-

proach for γ (above) and c1(bellow). In this plot the error bars were centered at the

fiducial values.

the comparison between the two and one (effective) tracer case, and the complementary

plots (6.13) and (6.14) make the comparison between one and two-tracers approach clearer.

The main difference between these two last figures is that in Fig. (6.14) the error bars

were forced to be centered at the fiducial values.
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6.5 Discussion and conclusion

We have compared the performance of methods for obtaining constraints on the

growth of structures. First, we compared the performance of the FKP and MT estima-

tors. Second, we compared the situation where two tracers are identified in a certain

observation, with the situation where we do not distinguish among the two species and

the analysis is performed considering one effective tracer. The knowledge of the best

observational strategy is relevant for optimizing the performance of near future surveys.

In order to perform these comparisons, we generated 1500 galaxy mocks for each

redshift slice z = {0.2, 0.35, 0.5, 0.65}. When propagating these errors for the target

parameters, as one can see in Figure (6.10), there are not significant differences between

the FKP and MT estimators.

The comparison between the two and one effective tracer is more fruitful. In par-

ticular, Figure (6.12) shows some important features. The most evident is that the one

tracer approach presents a correlation between γ and c1, whereas these parameters are

less correlated in the two-tracers approach. In other words, by distinguishing between the

two tracers we partially break the degeneracy between these two parameters. The redshift

evolution of these errors presents a peculiar feature: there is a redshift slice where the

two-tracers constraints presents maximum advantage over the effective tracer. This might

happen because the two-tracers approach is more effective where the signal-to-noise ratio

of each tracer is maximum, as we will show through the Fisher matrix approach in section

8. The redshift slice z = 0.65 is the one where the difference between the two approaches

is less pronounced. This is expected, since the volume of the simulated box increases with

redshift, and the two-tracers approach has more advantage in regimes where the cosmic

variance is more relevant.

Figures (6.13) and (6.14) show the error bars in the two approaches. Figure (6.14)

shows the error bars centered at the fiducial values of γ and c1. This plot shows that the

two-tracers approach always has advantage. For γ, the advantage is more pronounced at

the two intermediate redshifts, z = 0.5 and z = 0.65. We can conclude that constraints on

γ are sensitive to the signal-to-noise ratio. For c1, the advantage decreases as the redshift

(and the volume of the redshift slice) increases. We can conclude that constraints on c1
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are more sensitive to the volume, or in other words, more sensitive to cosmic variance.
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Chapter 7

Light cone construction

In this chapter I present a light cone code which was initially a final project for the

graduate courses “Structure formation”, taught by Prof. Raul Abramo, and “Physical

cosmology”, taught by Prof. Marcos Lima. Since the code that was developed as a result

of the work done in those courses is useful when constructing realistic mocks, this became

an additional project, in particular for the task of constructing realistic mocks for the

J-PAS survey.

7.1 Introduction

The upcoming surveys of the next decade such as Euclid 1, Javalambre Physics of the

Accelerated Universe Astrophysical Survey (J-PAS 2) and the Dark Energy Survey (DESI

3) are hoping to bring light to a deep problem in modern cosmology, namely, the nature

of dark energy. Also, many models will be constrained with unprecedented precision as

inflation and MG. Thus, realistic galaxy mocks are needed in order to be able to estimate

covariance matrices and also to study the surveys properties and possible strategies to

extract the maximum amount of information from future data.

The construction of realistic galaxy mocks involves many steps, from N-body simu-

lation to detailed features of the desired survey, as selection and window functions. The

1https://www.euclid-ec.org
2http://www.j-pas.org
3https://www.desi.lbl.gov/
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most computationally intensive step is to generate large N-body simulations. There are,

however, shortcuts for generating halo catalogs without the need of N-body simulations.

In particular, the Excursion set halos method (ExSHalos), introduced in [92], provides a

recipe for generating halo catalogs with relatively small computational costs.

Another important step in this pipeline is the construction of light cones out of these

halo catalogs. N-body simulations, as well as ExSHalos and similar halo mock codes,

generates boxes in fixed redshit slices (hypersurfaces of constant time, or snapshots).

Since we observe a continuum of redshifts in real data, these outputs are not realistic

when it comes to building a more faithful representation of the data and estimating

covariances which can be used to obtain constraints from real data. Thus, constructing a

past light cone from these snapshots is an essential step in the pipeline for creating galaxy

mocks.

In this work I describe, step by step, how to create a “past light cone” from boxes

of cosmological simulations at fixed redshift slices. I also show tests of consistency by

estimating the monopoles from the light cones. This part of the dissertation is organized

as follows: in section 7.2 the method for generating light cones is introduced; in section

7.3 the main results are presented together with a short discussion; and in section 7.4 we

conclude and discuss the next steps.

7.2 Method description

The method for constructing light cones out of simulated boxes is very straightfor-

ward, and involves only a couple of simple steps. The method we describe in this section

is employed in reference [78].

The light cone in this work was built out of 30 cubic boxes of 2 h−1 Gpc each in

redshift slices between 0.7−1.3. The input boxes consist Nh (number of haloes) lines and

8 columns, namely, cartesian positions in h−1 Mpc, velocities in km s−1, halo masses in

h−1 M� and number of particles in each halo.

The light cone generated for this example has 1/4 of the full sky, and the observer

is defined to be in the origin of a cartesian system (see Figure 7.2), but the method can
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Figure 7.1: The configuration of duplicated boxes

be easily generalized for the full sky or any other area. The cone can be generated using

any separation between slices, and this number must be given as an input. The first

step is to interpolate the relation z = z(r), where r is the comoving distance defined as

r(z) =
∫ z

0
dz′
H(z′) .

The interpolated function z = z(r) will be used inside a loop. The code basically

works with a loop with the counter running through the number of slices Nslices. Inside

each interaction, the box of the actual slice is opened and the haloes which satisfy some

criterion are chosen and written in the light cone. Before entering inside the loop, it is

checked how many duplicated boxes the actual slice requires, as follows.

Duplicated boxes might be needed because we aim to reproduce 1/4 of the full sky

and we only have boxes of 2 Gpc. The comoving distance associated with redshift z = 1.3

for the cosmology in which the boxes were generated is r ' 2768 h−1 Mpc, and exceeds

the boxes size. Then, in order to select halos with comoving distances which exceeds the

boxes size a duplication of boxes is needed.

The boxes were duplicated in a way such that the observer is centered at the origin

and the 1/4 of the sky observed lies inside the volume delimited by r(0.7) < r < r(1.3),

0 < θ < π/2 and −π/2 < φ < π/2. Where θ and φ are, respectively the polar and

azimuthal angles. Thus, in order to reproduce 1/4 of the sky, it is needed 2 boxes in the

x direction, 2 boxes in the z direction and 4 boxes in the y direction, 2 in the positive
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for n in Nboxes do

if Duplicate boxes then

for i in number of replicas do

for j in number of replicas do

for k in number of replicas do

x = x+i*Lbox

y = y+j*Lbox

z = z + k*Lbox

y− = -z

z− = y

r =
√
x2 + y2 + z2

θ = arcos(z/r)

φ = arctan(y/x)

θ− = arcos(z−/r)

φ− = arctan(y−/x)

zreal = z(r)

s = r + v.r̂(1+zreal)
H(zreal)

zobs = z(s)

cond = zn+zn−1

2 < zobs <
zn+1+zn

2

if cond then

Write on the light cone

end

end

end

end

else

Do the same with only one duplication

end

end

Algorithm 1: Main algorithm in the light cone construction.
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Figure 7.2: 3D representation of the light cone. The axis have units of h−1 Mpc

side and 2 in the negative side (the origin in the original boxes is defined at the corner).

Figure (7.1) shows this configuration.

Inside the three fors in algorithm 1, in order to duplicate boxes in the negative side

of y axis in such way to satisfy the periodic boundary conditions, one needs to rotate by

θ = π/2 every halo in the y− z plane so that the coordinates of halos in boxes duplicated

in the negative side of y axis have coordinates (x−, y−, z−) = (x,−z, y), whereas (x, y, z)

are coordinates of a halo in a duplicated box in the positive side of the y axis.

Then, if the comoving radial distance associated with the actual slice did not exceed

h−1 Gpc, then only two boxes are needed, the original one plus one duplication (for the

negative y axis side). However, if the comoving radial distance exceeds 2 h−1 Gpc, then

4× 2× 2− 1 = 15 duplicated boxes are needed.

The duplications should not affect the power spectrum on scales smaller then 2 h−1

Gpc, which corresponds to k ' 0.003 h Mpc−1.
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Figure 7.3: Left: Distribution of Haloes as function of DEC cooredinate and redshift

within a bin of 2◦ in RA. Right: Distribution of Haloes as function of RA cooredinate

and redshift within a bin of 2◦ in DEC.

Summarizing, inside each loop, the following sequence of steps is computed:

• Pass from cartesian to spherical coordinates (r, θ, φ).

• Calculate the redshift in real space of each halo zreal = z(r).

• Move halos to redshift space s = r + v.r̂(1+zreal)
H(zreal)

.

• Calculate the observed redshift zobs = z(s).

• Select halos satisfying (zi−1 +zi)/2 < zobs < (zi+1 +zi)/2, where i is the actual slice.

7.3 Results

I generated light cones with different number of slices, and therefore different dis-

tances ∆z between those slices. The original slices are cubic boxes of length L = 2 h−1

Gpc containing halos with masses in the range lnM ∈ [12.7, 15] . Fig. (7.3) shows the

distribution of halos in the light cone as a function of angular coordinates RA (left), DEC

(right) and redshift z.

In order to test if the light cones satisfy the expected halo distribution statistics, the

halo monopoles were measured from rectangular boxes of dimensions 400×400×1000 h−1

Mpc (the larger dimension is in the radial direction) which were cropped from inside the

light cone volume in different ways, corresponding to real observations of the sky with

different LOS, as shown in Figure (7.7). Hereafter we refer to these boxes as directions
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Figure 7.4: From up to down and left to right, relative difference between the light cone

and slice monopole for different values of ∆z in directions 1, 2, 3 and 4.

1, 2, 3, 4. Note that, since we are cropping boxes with 1000 h−1 Mpc along the radial

direction, then the cropped boxes must contain halos coming from many different slices.

Hence, we are testing a worst case scenario.

The main question we aim to answer in this analysis is how the difference between

the power spectrum measured from the individual slices and from the light cone generated

using different number of slices changes. This information is useful in order to know the

minimum number of boxes required to generate realistic mocks.

Fig. 7.6 shows the monopole measured from individual slices compared to those

measured from boxes cropped inside light cones (Figure (7.7)), which were constructed

using different separations ∆z = 0.02, 0.04, 0.06, 0.1, 0.2 between slices. Note that the

fixed slices are in slight different redshifts – this was necessary because, for different ∆z,

the correspondent light cones were generated with slight different ranges and in each case

the fixed slice was chosen to be in the middle of the corresponding range. Notice that in
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Figure 7.5: Average relative difference between all directions for different values of ∆z

Fig. (7.6) it is only shown boxes cropped in direction 1 (Figure (7.7)).

The deviation of the light cone spectra from the slice spectra on large scales is due to

the fact that we are correlating scales at different redshifts when estimating the spectra

from the light cone, in contrast to the fixed slice box, where all halos are in the same

redshift. This is an expected effect when estimating the power specturm from light cones.

These results show a peculiar feature: It is not true that smaller ∆z generates smaller

difference between the monopoles in the fixed slice and in the light cone, (∆S−LC). In fact,

the light cone generated with ∆z = 0.06 presents a smaller difference (∆S−LC . 10%)

from the fixed slice than the light cone generated with ∆z = 0.02 (∆S−LC & 20%). The

other slices follow the rule: the bigger ∆z, bigger the difference between light cone and

fixed slice ∆S−LC . Indeed, for the three similar ∆z (0.02, 0.04 and 0.06), ∆S−LC is also

similar, but when we vary significantly ∆z, then ∆S−LC also varies significantly. For

instance, for δz = 0.2, 20% . ∆S−LC . 40%.

In order to verify if this particular relation between ∆S−LC and ∆z is only a feature of

this particular box (direction 1), which corresponds to a particular realization, I compared

the differences coming from the other directions.
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Figure 7.6: The monopole estimated from a box cropped from the light cone with perpen-

dicular to LOS dimensions of 400 h−1 Mpc × 400 h−1 Mpc and parallel LOS (direction

1) dimensions of 1000 h−1 Mpc. From up to down and left to right, this light cone was

generated with a distance of ∆z = 0.02, 0.04, 0.06, 0.1 and 0.2 between slices.
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Figure 7.7: Boxes cropped from inside the light cone. The numbers label the direction of

each box.

Figure 7.7 shows the comparison between the relative differences ∆S−LC for all ∆z

coming from boxes cropped in different directions. These figures show that it is not always

true what was observed in direction 1. In fact, in direction 2 the difference ∆S−LC for

∆z = 0.06 is bigger than that for ∆z = 0.04 and ∆z = 0.02 for almost all scales. This

suggests that for similar ∆z, ∆S−LC fluctuates depending on the direction.

Figure (7.5) shows the average ∆S−LC between the four directions. We see that for

∆z = 0.06 the relative difference is in fact bigger than those for ∆z = 0.04 and ∆z = 0.02

for most values of k, whereas the latter two do not present significant differences. There is

also an overall tendency of ∆S−LC to increase on small scales. Since the light cone boxes

contain less halos than the fixed slice boxes, this effect might be due to the shot-noise.

7.4 Conclusion and next steps

The goal of the present work was to generate halo catalogs in the light cone using

boxes at fixed slices coming from simulations. The code can generate light cones out of

simulated boxes within ' 5 minutes when using 30 cubic boxes of length L = 2 h−1 Gpc.

The agreement of the monopole estimated from the fixed slices and the light cone

suggests that the combination of this method with the ExSHalos can be part of a pipeline

110



for generating fast realistic galaxy mocks. As was shown in this work, simulated boxes

with redshift distances of ∆z = 0.02 can be used to generate light cones whose monopoles

agree with the monopoles computed for an effective redshift, without the effects due

to mixing scales at different stages of evolution, as long as the length along the radial

direction of the box used to estimate the spectra is less then ∼ 600 h−1 Mpc.

There are some further analysis which can be done in order to verify the light cone

effects, namely, to quantify the light cone effect on the covariance between scales. This can

be achieved by generating a number of full sky light cones and estimating the monopoles

of boxes cropped in different regions, or generating a number of realizations in the light

cone.

The next step in the sense of building fast galaxy mocks is to implement a window

function for the desired survey.
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Chapter 8

Fisher Matrix for multiple tracers in

the non-linear regime:

model-independent constraints in fσ8

In this chapter I present the work I have been developing in collaboration with Raul

Abramo and Luca Amendola, which is an extension of a previous work published by them

[3].

8.1 Introduction

The upcoming surveys of this decade such as Euclid 1, J-PAS 2 and the Dark Energy

Survey (DESI 3) will provide us with powerful data about the Large Scale Structure (LSS)

of the universe at redshifts up to z ∼ 1.7. The LSS encapsulates valuable information

about the underlying physics which drives the universe on cosmological scales. In partic-

ular, these observations are an opportunity to test GR in an uncharted regime, i.e, in late

times and on cosmological scales.

There are two main limitations in how well we are able to extract the underlying

physics of data on cosmological scales. On large scales, the precision at which we are able

1https://www.euclid-ec.org
2http://www.j-pas.org
3https://www.desi.lbl.gov/

113



to measure cosmological parameters is limited, since the number of modesN lin
modes is limited

on scales comparable to the survey volume and the error bars scale with ∼ 1/
√
Nmodes,

the so called cosmic variance. In the last two decades, some progress has been made

in order to overcome the cosmic variance. A promising approach consists of identifying

multiple tracers of the underlying dark matter density field with different number densities

n̄i and biases bi (i = 1, ..., Ntracers). It has been shown that the Optimum Multi-Tracer

Estimator (MT), which saturates the multi-tracer fisher matrix [2], can measure the

individual spectra with precision that is not limited by cosmic variance [4, 5, 63]. Recently,

the multi-tracer approach has been applied in galaxy mock data from the VIMOS Public

Extragalactic Redshift Survey (VIPERS) [64] and it was shown that the MT provides

a less-correlated measurement then the traditional Feldman Kaiser & Peacock (FKP)

estimator, specially on small scales.

The second limitation arises from the difficulty in building theoretical models on

mildly non-linear and non-linear scales, where the dynamics is extremely complicated

and baryonic effects are relevant. The Effective Field Theory of Large-Scale Structure

(EFTofLSS) provides a way of parameterizing the unknown mildly non-linear physics and

has been useful in order to obtain constraints on these scales [27].

The ability to model and measure on mildly non-linear scales might be crucial in

order to differentiate among MG models, since some viable MG models differentiate from

GR on these scales, while being almost identical to GR on linear scales [21, 47, 55].

Furthermore, the number of modes and also the amount of information scales as k3. If

we assume that, at redshift zero, the linear theory is valid up to k ∼ 0.1 h Mpc−1, while

the mildly non-linear regime is valid up to k ∼ 0.5 h Mpc−1, then the mildly non-linear

regime has much more information than the non-linear regime, since the number of modes

in these two regimes relates roughly as Nmild.non−linear
modes ' 100N lin

modes.

Despite sharing the same expansion history with GR, viable MG models have different

growth histories. Hence, a key observable in order to differentiate between theories of

gravity is the growth rate f ≡ d lnG(z)/d ln a, where G(z) is the growth function, usually

expressed as fσ8, where σ8 is the rms mass fluctuations inside a sphere of 8 h−1 Mpc.

In this work we use the fisher matrix formalism to contrast two strategies for con-

straining fσ8 in the future surveys: treat two populations of galaxies which trace the large
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scale structure as one effective tracer and the situation where we treat each population

as separated tracers.

8.2 General definitions

In this work we use two redshift bins in order to be able to measure the ratio

r ≡ fσ8(z1)

fσ8(z2)
. (8.1)

This measurement can be achieved as follows. Including redshift space distortions in the

linear regime and a Fingers Of God (FOG) model for the mildly non-linear regime [42, 96],

the matter power spectrum can be written as :

P (k, z) = [b2 + fµ2]2n̄σ2
8(z)G2

FOG(k)P0(k) = (8.2)

= [n̄σ2
8(z)G2

FOG(k)b4 + 2b2fG2
FOG(k)µ2 + n̄σ2

8(z)G2
FOG(k)f 2µ4]P0(k) = (8.3)

= [A(k, z) +B(k, z)µ2 + C(k, z)µ4]P0(k) , (8.4)

where σ8(z) = G(z)σ8, G(z) is the growth function and GFOG(k) = e−
µ2k2σ2

v
2 is the FOG

correction to the spectrum, which is due to peculiar velocities in the mildly non-linear

regime. In this phenomenological model σv is the dispersion velocity of tracers inside a

halo in units of h−1 Mpc, i.e, σv/H0 → σv.

For every bin in k, z one could fit the data for various µ and measure the three

coefficients A(k, z), B(k, z) and C(k, z). The ratio of the third coefficient at two different

redshift slices gives:
C(k, z1)

C(k, z2)
=
fσ2

8(z1)

fσ2
8(z2)

= r2(k, z1, z2) , (8.5)

where we assumed the FOG factor to be only function of scale, but redshift independent.

A measurement of the ratio r(k, z1, z2) can impose constraints on the growth rate.

Furthermore, we can use the parameterization for the growth rate Ωm(z)γ and constraint

the growth index γ. Also, to be as model independent as possible, one could allows γ to

vary in redshift and f to be scale dependent using parameterizations found in literature

[76].

115



We will contrast the situation where we have two tracers with the situation where

we treat these two tracers as being one effective tracer. The two tracers combine into one

single effective tracer as:

n = n1 + n2 = n̄1[1 + (b1 + fµ2)G
(1)
FOGδm] + n̄2[1 + (b2 + fµ2)G

(2)
FOGδm] =

= n̄1 + n̄2 + [n̄1b1G
(1)
FOG + n̄2b2G

(2)
FOG + fµ2(n̄1G

(1)
FOG + n̄2G

(2)
FOG)]δm =

= n̄1 + n̄2 + [
n̄1b1G

(1)
FOG + n̄2b2G

(2)
FOG

n̄1G
(1)
FOG + n̄2G

(2)
FOG

+ fµ2](n̄1G
(1)
FOG + n̄2G

(2)
FOG)δm =

= n̄+ [b+ fµ2]n̄GFOGδm = n̄[1 + (b+ fµ2)GFOGδm] , (8.6)

where n̄ = n̄1 + n̄2 and we use the superscript to label the tracers. The effective bias and

FOG factor were defined as:

b ≡ n̄1b1G
(1)
FOG + n̄2b2G

(2)
FOG

n̄1G
(1)
FOG + n̄2G

(2)
FOG

(8.7)

and

GFOG ≡
n̄1G

(1)
FOG + n̄2G

(2)
FOG

n̄1 + n̄2

. (8.8)

With the latter definition, we can also define an effective dispersion velocity as:

σeff =

√√√√− 2

k2µ2
ln

[
n̄1G

(1)
FOG + n̄2G

(2)
FOG

n̄1 + n̄2

]
=

√√√√− 2

k2µ2
ln

[
G

(1)
FOG + qG

(2)
FOG

1 + q

]
, (8.9)

where q ≡ n2/n1. That is, the FOG correction of the effective tracer will be

GFOG = e−µ
2k2σ2

eff . (8.10)

The effective redshift space distortion parameter follows from (8.7):

β ≡ f

b
=

f

n̄1b1G
(1)
FOG+n̄2b2G

(2)
FOG

n̄1G
(1)
FOG+n̄2G

(2)
FOG

=
(1 + gq)β1β2

β2 + gqβ1

, (8.11)

where g ≡ exp [−µ2k2(σ2
2 − σ2

1)/2]. Definitions (8.7) and (8.11) show that the effective

bias and redshift distortion parameter will present scale dependence if σ1 6= σ2. However,

if |σ2
2 − σ2

1| � 1, the effective bias and redshift distortion parameter will not depend

on scale, instead, it will be equal to the second tracer. Thus, in this limit and with

large signal-to-noise ratio, it is expected for the constraints for single effective tracer and

multitracer to coincide, since one of the two tracers will be suppressed and the multitracer

fisher matrix will reduce to the FKP fisher matrix.
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8.3 One tracer, two redshift bins

For the single tracer case, let us start from the fisher matrix per unit of phase-space

volume for variables Y = {lnP(k, z1), lnP(k, z2)}:

F̄ [Y ] =
1

2

( P(k,z1)
1+P(k,z2)

)2

0

0
(
P(k,z2)

1+P(k,z2)

)2

 , (8.12)

where P(k, zi) = [1+β(zi)µ
2]n̄(zi)σ

2
8(zi)G

2
FOG(k)b2(zi)P0(k) is the total power. Hereafter,

when referring to the redshift slice i, we will use the notation f(zi) ≡ fī.

We would like to project this fisher matrix onto the setX = {log r, logP1̄, log β1̄, log β2̄, log σv}
where P1̄ ≡ n̄1̄b

2
1̄σ

2
81̄P0(k) is the signal-to-noise ratio and σv denotes the dispersion velocity

of the effective combined tracer. The set X is the smallest set of independent parameters

we can construct in the case of one tracer and two redshift bins. Indeed, we can write P2̄

as function of the other parameters:

r2 = q
P1̄β

2
1̄

P2̄β
2
2̄

. (8.13)

Therefore,

P2̄ = q
P1̄β

2
1̄

r2β2
2̄

, (8.14)

where q ≡ n2̄

n1̄
is the ratio of the number densities at each slice.

We then can project the Fisher matrix (8.12) onto the set X as:

F̄ [Xi, Xj] =
2∑

α,β=1

∂Yα
∂Xi

F̄ [Yα, Yβ]
∂Yβ
∂Xj

. (8.15)

However, the resulting Fisher matrix will have zero determinant by construction, in order

to obtain a non-singular Fisher matrix, we need to sum the contribution originating from

all values of µ. This procedure is equivalent to obtaining constraints using the information

from the multipoles with different values of ` = 0, 2, 4. Therefore, the total information is

F̄ [X] =

∫ 1

−1

dµF̄ [X](µ) (8.16)

and its inverse is the covariance matrix. Thus,

σr = (F̄−1)11 , σβ1̄
= (F̄−1)33 , σβ2̄

= (F̄−1)55 (8.17)

, σσv = (F̄−1)44 (8.18)

are the marginalized relative errors for r, β1̄, β2̄, σv.
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8.4 Two tracers, two redshift bins

For the two-tracer case, we start from the multi-tracer Fisher matrix per unit of

phase-space volume for the set Y 2t = {logP1̄1, logP1̄2, logP2̄1, logP2̄2} [2]:

F̄ [Y 2t] =

P1̄1P1̄

(1+P1̄)
+
P2

1̄1
(1−P1̄)

(1+P1̄)2

P1̄1P1̄2(1−P1̄)
(1+P1̄)2 0 0

P1̄1P1̄2(1−P1̄)
(1+P1̄)2

P1̄2P1̄

(1+P1̄)
+
P2

1̄2
(1−P1̄)

(1+P1̄)2 0 0

0 0 P2̄1P2̄

(1+P2̄)
+
P2

2̄1
(1−P2̄)

(1+P2̄)2

P2̄1P2̄2(1−P2̄)
(1+P2̄)2

0 0 P2̄1P2̄2(1−P2̄)
(1+P2̄)2

P2̄2P2̄

(1+P2̄)
+
P2

2̄2
(1−P2̄)

(1+P2̄)2

 , (8.19)

where Pīα = (1 + βīαµ
2)2G

(̄iα)
FOGn̄īαb

2
īασ

2
8̄iP0(k) is the effective power of tracer α at the

redshift bin ī and Pī =
∑

αPīα is the total effective power at the bin ī. As in the one

tracer case we define the signal-to-noise ratio Pīα ≡ n̄αb
2
īασ

2
8̄iP0(k).

The smallest set of parameters we can construct in the case of two redshift bins

and two tracers is X2t = {log r, logP1̄, log β1̄1, log β1̄2, log β2̄1, log β2̄2, log σ1, log σ2}. This

reduction is possible if one notes the following relations:

Pī1 =
Pī
Zī

(8.20)

and

Pī2 =
PīYī
Zī

, (8.21)

where,

Zī = (1 + qī)

(
1 + gqī

βī1
βī2

1 + gqī

)2

, Yī = qī

(
βī1
βī2

)2

, (8.22)

with g ≡ exp
[
−µ2k2(σ2

2−σ2
1)

2

]
. The relations above together with the relation between P2̄

and P1̄,

P2̄ = q1
Z2̄P1̄β1̄1

Z1̄r2β2̄1

, (8.23)

turn possible the reduction to the set Y 2t. Then, we project onto the set X2t:

F̄ [X2t
i , X

2t
j ] =

4∑
α,β=1

∂Y 2t
α

∂X2t
i

F̄ [Y 2t
α , Y

2t
β ]

∂Y 2t
β

∂X2t
j

. (8.24)
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8.5 Results

The relative marginalized errors for r are given by the corresponding element of the

covariance matrix, i.e, σ1t
r =

√
(F̄−1

1t )11 and σ2t
r =

√
(F̄−1

2t )11. In this section we contrast

these constraints in different regimes.
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Figure 8.1: Marginalized relative errors σr as a function of P1̄ for k = 0.2 h Mpc−1 (left)

and k = 0.5 h Mpc−1 (right). Here βī1 = 0.5, βī2 = 1.0 and σ2
v = 3.0 h Mpc−1 are

fixed. Solid lines correspond to relative marginalized errors from the multi-tracer fisher

matrix while the dot-dashed lines correspond to the relative marginalized errors from the

single tracer fisher matrix using the combined effective tracer with effective bias and FOG

correction given, respectively by equations (8.7) and (8.8).

In all plots solid lines refer to the two-tracer case, while dot-dashed lines refer to the

combined effective tracer with bias and FOG correction given respectively by equations

(8.7) and (8.8). In all figures k = 0.2 h Mpc−1 and k = 0.5 h Mpc−1, respectively, on

the left and right plots. The parameter r is always fixed at r = 0.74, which corresponds

roughly to fσ8(z = 0.5)/fσ8(z = 1.6) in ΛCDM.

Figure (8.1) shows the comparison between relative marginalized error σr in the single

and two-tracer case as a function of P1̄, with fixed βī1 = 0.5, βī2 = 1.0 and σ2
v = 3.0 h−1

Mpc, while the velocity dispersion of the first tracer assumes σ1
v = 2.0 h−1 Mpc and

2.5 h−1 Mpc. There is an evident overall increase in the errors for k = 0.5 h Mpc−1,

and in fact this effect is expected, since for larger values of k the FOG damping is more

significant. An important feature is that even in the limit of the mildly non-linear regime

(k ∼ 0.5 h Mpc−1) the multi-tracer advantage is preserved.

Figure (8.2) shows the relative marginalized errors σr as a function of βī1, while
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Figure 8.2: Marginalized relative errors σr as a function of βī1 and fixed βī2 = 1.0 for

k = 0.2 h Mpc−1 (left) and k = 0.5 h Mpc−1 (right). Here σ1
v = 2.0 h−1 Mpc and

σ2
v = 3.0 h−1 Mpc. Solid lines correspond to relative marginalized errors from the multi-

tracer fisher matrix while the dot-dashed lines correspond to the relative marginalized

errors from the single tracer fisher matrix using the combined effective tracer with effective

bias and FOG correction given, respectively, by equations (8.7) and (8.8).

βī2 = 1.0 is fixed, for P1̄ = 1.0 (blue), 10.0 (red) and 100.0 (green). As expected, the

single and two-tracers constraints coincide at βī1 = 1.0.
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Figure 8.3: Marginalized relative errors σr as a function of σ1
v for k = 0.2 h Mpc−1 (left)

and k = 0.5 h Mpc−1 (right). Here βī1 = 0.5, βī2 = 1.0 and σ2
v = 3.0 h−1 Mpc are

fixed. Solid lines correspond to relative marginalized errors from the multi-tracer fisher

matrix while the dot-dashed lines correspond to the relative marginalized errors from the

single tracer fisher matrix using the combined effective tracer with effective bias and FOG

correction given, respectively, by equations (8.7) and (8.8). The blue, red and green lines

correspond respectively to P1̄ = 1.0, 10.0 and 100.0.

Figure (8.4) shows the relative marginalized errors σr as a function of σ1
v for βī1 = 0.5,
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βī2 = 1.0 and σ2
v = 3.0 h−1 Mpc. In the low signal-to-noise regime, the effective FOG

(equation (8.8)) damps the effective tracer for large values of σ1
v , while in the two-tracer

case, the damping only affects one of the two tracers and hence the two-tracers constraints

have an appreciable advantage when σ1
v & 5 h−1 Mpc. In the regime of large signal-to-

noise and σ1
v & 5 h−1 Mpc, the two-tracer constraint loses advantage as σ1

v increases. This

happens because the FOG factor damps the first tracer and the multi-tracer fisher matrix

reduces to the FKP fisher matrix. In realistic cases, i.e, for 2 h−1 Mpc . σv . 5 h−1

Mpc, the two-tracer case has an appreciable advantage in the large signal-to-noise regime.

Finally, in Figure (8.5) we display the regions in the βī1−P1̄ (left), σ1
v −P1̄ (middle) and

βī1 − σ1
v (right) plane where the two-tracers approach has more advantage.
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Figure 8.4: Marginalized relative errors σr as a function of σ1
v for k = 0.2 h Mpc−1 (left)

and k = 0.5 h Mpc−1 (right). Here βī1 = 0.5, βī2 = 1.0 and σ2
v = 3.0 h−1 Mpc are

fixed. Solid lines correspond to relative marginalized errors from the multi-tracer fisher

matrix while the dot-dashed lines correspond to the relative marginalized errors from the

single tracer fisher matrix using the combined effective tracer with effective bias and FOG

correction given, respectively, by equations (8.7) and (8.8). The blue, red and green lines

correspond respectively to P1̄ = 1.0, 10.0 and 100.0.

8.6 Constraining models

We report in Fig. (8.6) how J-PAS, Euclid and DESI are capable of distinguishing

among models of gravity, contrasting the one and two-tracers cases. This exercise aims

to quantify the advantage of the two-tracers approach for each survey, which depends on

the number of objects (signal-to-noise) and the volume.
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Figure 8.5: Relative difference ∆r = σ1t
r /σ

2t
r − 1 between relative marginalized errors σr

obtained with single (combined) tracer and two tracers. Here, k = 0.5 h Mpc−1 is fixed.

In the left plot, βī2 = 1.0, σ1
v = 2.0 h−1 Mpc and σ1

v = 3.0 h−1 Mpc. In the middle plot,

βī1 = 0.5, βī2 = 1.0 and σ2
v = 3.0 h−1 Mpc. In the right plot, βī2 = 1.0, σ2

v = 3.0 h−1 Mpc

and P1̄ = 10.0.

We use the well known parameterization for the growth rate [39, 59, 74, 93]:

f = Ωγ
m(z). (8.25)

Therefore, we can parameterize r(z1̄, z, γ) as

r(z1̄, z, γ) =
f(z1̄)σ8(z1̄)

f(z)σ8(z)
=

[
Ωm(z1̄)

Ωm(z)

]γ ∫ z

z1̄

Ωγ
m(z′)

1 + z′
dz′. (8.26)

In the above expressions,

Ωm(z) =
Ω

(0)
m (1 + z)3

E(z)
(8.27)

and γ is the growth index, which is useful in order to parameterize deviations from General

Relativity (GR). The value this parameter assumes in the standard (GR based) model is

γGR = 6/11 ' 0.5454. In this exercise we fix one redshift slice z1̄ and vary the second.

For J-PAS, Euclid and DESI we used, respectively, ELGs + LRGs, ELGs + QSOs4

and ELGs + LRGs, with densities found in Table (8.1). For J-PAS, we used fiducial bias

given by [77]:

b(z) =
b0

D(z)
, (8.28)

4Quasars, here defined broadly as broadline AGNs (Active Galactic Nuclei).
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Figure 8.6: Constraints on r for J-PAS (ELG + LRG), Euclid (ELG + QSO) and DESI

(ELG + LRG).
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where b0 = 0.84 for ELGs and b = 1.7 for LRG. For Euclid and DESI we used bias of the

form b(z) =
√

1 + z for ELGs and b(z) = 0.53 + 0.289(1 + z)2 for QSOs.

We consider the observed area of 8500 deg2, 15000 deg2 and 14000 deg2, respectively

for J-PAS, Euclid and DESI, which correspond to fractions of the whole sphere of fJ-PAS =

0.206, fEuclid = 0.363 and fDESI = 0.339.

In these calculations I used fiducial pairwise velocity dispersions of σv = 4h−1 Mpc,

σv = 2h−1 Mpc and σv = 1h−1 Mpc for ELGs, LRGs and QSOs, respectively.

In order to obtain constraints for each survey from the Fisher matrix per unit of

phase-space volume, F̄ , we need to multiply the relative marginalized errors by the square

root inverse of the phase-space volume

V−1/2 '
√

π

V 2/3k2
, (8.29)

where V is the survey volume and k is the scale at which the constraints were calculated.

The constraints on Fig (8.6) were calculated for k = 0.1 h Mpc−1. Table (8.2) shows

values of V−1/2 for each survey.

Fig. (8.6) shows clearly the tendency we have seen in previous results of this work:

the difference between one and two tracers depends strongly on the signal-to-noise ratio,

n̄P (k, z). This explains why J-PAS has a similar performance compared with Euclid and

DESI for two tracers. Furthermore, for the observable r(z1̄, z2̄) in particular, the power of

differentiating among models is larger for J-PAS, since the range of redshifts covered by

J-PAS is larger than the one in DESI: the constraints depend on the distance between the

two redshift slices, ∆z = z2̄− z1̄. If δz is large, we are summing uncorrelated information

coming from the two slices. Summarizing, when combining two redshift slices to constrain

γ, it is advantageous to have a wide range of redshifts and large signal-to-noise, than to

measure large volumes with small signal-to-noise and in a small range of redshifts.

8.7 Conclusions

We have shown how one can combine different redshifts to obtain model-independent

constraints on cosmological parameters. This exercise is useful for checking our models
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J-PAS

z ELG LRG

0.3 2958.6 226.6

0.5 1181.1 156.3

0.7 502.1 68.8

0.9 138.0 12.0

1.1 41.2 0.9

Euclid

z ELG QSO

0.7 290 2.75

0.8 242.1 2.65

0.9 206.6 2.6

1.0 181 2.56

1.1 161.5 2.555

1.2 144.1 2.52

1.3 121.25 2.5

1.4 99 2.45

1.5 81.75 2.4

1.6 66 2.34

1.7 50.25 2.3

DESI

z ELG LRG QSO

0.7 69.1 48.7 2.75

0.9 81.9 19.1 2.60

1.1 47.7 1.18 2.55

Table 8.1: Left: redshift bins and densities of luminous red galaxies and emission line

galaxies for J-PAS. Middle: redshift bins and densities of emission line galaxies for Euclid.

Right: redshift bins and densities of emission line galaxies, red luminous galaxies and

quasars for DESI. Galaxy densities in units of 10−5 h3 Mpc−3
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J-PAS

z V(×109Mpc3) V−1/2(k)

0.3 3.0 0.018

0.5 6.63 0.014

0.7 10.3 0.012

0.9 13.5 0.0109

1.1 16.2 0.0103

Euclid

z V(×109Mpc3) V−1/2(k)

0.7 18.1 0.01

0.9 23.8 0.009

1.1 28.5 0.0085

1.3 32.1 0.0082

1.5 34.8 0.008

1.7 36.6 0.0078

DESI

z V(×109Mpc3) V−1/2(k)

0.7 17.0 0.01

0.9 22.3 0.0092

1.1 26.6 0.0087

Table 8.2: Redshift bins, volume and square root inverse of the space-volume factor for

J-PAS (left), Euclid (middle) and DESI (right). These values were calculated at k = 0.1 h

Mpc−1

and theories in a way that does not bootstrap our constraints. Our results also show

clearly the potential gains from discriminating the different types of tracers of large-scale

structure, and conversely, the disadvantages of combining different types of galaxies into

simplified samples. The possibility of observing different types of galaxies in the same

volumes, as well as volumes at different redshifts, will become more relevant in the years

to come, as galaxy surveys become able to map the cosmos over large areas of the sky,

and out to ultra-large distances.
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Chapter 9

Conclusions and next steps

In recent decades cosmology has revealed astonishing features of the Universe, such

as discovery of the accelerated expansion [11]. The ΛCDM model has been established

as the standard model of cosmology due to its simplicity and its power to explain all

the available data so far. However, to build a physically consistent explanation for the

accelerated expansion is one of the major challenges of modern science, and has major

consequences ranging from particle physics to large scale cosmology. Furthermore, the

recent tension between local measurements of the rate at which the universe expands

today, mainly by measuring Type Ia Supernovae [31], and the value inferred from the

CMB observations by the Planck telescope [9], has created tensions within this edifice,

fomenting an intense debate in the literature [41, 71, 83, 90, 100].

Fortunately, surveys of next generation such as Euclid, J-PAS and DESI will provide

us with a lot of information regarding the largest structures of the Universe. The advent of

all these data sets will hopefully bring light into the physics on such scales. In particular,

we will have the chance of testing GR with an unprecedented precision at the largest

observable scales, and further testing the standard explanation that dark energy has

become the dominant form of energy in the cosmic budget. This golden age of cosmology

has motivated the work presented in this master’s dissertation.

Here we have tested different observational strategies as well as different statistical

tools in order to extract as much information as possible from the upcoming data. We

treat the problem in two complementary ways: simulating galaxy mocks which mimic
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the upcoming data from J-PAS, and employing the analytical Fisher matrix formalism.

We employed these two methods for studying how different strategies are capable of

constraining the growth rate of large scale structure.

With the simulated mocks we tested the performance of the estimator presented by

Feldman Kaiser & Peacock in 1994 (FKP) [37] and the Multi-Tracer (MT) estimator

proposed by Abramo et al. [5]. The latter takes into account the information coming

from different tracers of large scale structure and generalizes the FKP weights. At regimes

where the comparison between these two estimators were performed, we did not find any

evidence of advantage of one or another. Nevertheless, using the simulated mocks, we find

that splitting tracers in two populations, and measuring them separately, has significant

advantages compared with the situation where the all the tracers are simply treated as

one effective tracer.

With the fisher matrix formalism we have investigated the differences of the one tracer

and two-tracers approach on linear and mildly non-linear scales. Confirming the previous

results with the mocks, we find that the two-tracers approach always has significant

advantages.

Identifying and using information of multiple tracers of large scale structure such as

different types of galaxies, Lyman-α systems and QSOs is not trivial. In photometric

surveys such as J-PAS, the classification of observed objects is a source of uncertainty,

and how these uncertainties propagate to the parameter constraints is something that is

still poorly understood. Among the next steps of this work, we aim at understanding how

these uncertainties propagate to parameters of interest to testing gravity, such as fσ8.

Also, we would like to estimate fσ8 from the data in a model-independent way, in the

sense that we do not have to assume the ΛCDM model to derive the constraints. Finally,

last but not least, we of course expect to apply our expertise and tools to real data.

128



Chapter 10

Bibliography

[1] Benjamin P Abbott, R Abbott, TD Abbott, MR Abernathy, F Acernese, K Ackley,

C Adams, T Adams, P Addesso, RX Adhikari, et al. Tests of general relativity with

gw150914. arXiv preprint arXiv:1602.03841, 2016.

[2] L Raul Abramo. The full fisher matrix for galaxy surveys. Monthly Notices of the

Royal Astronomical Society, 420(3):2042–2057, 2012.

[3] L Raul Abramo and Luca Amendola. Fisher matrix for multiple tracers: model

independent constraints on the redshift distortion parameter. Journal of Cosmology

and Astroparticle Physics, 2019(06):030, 2019.

[4] L Raul Abramo and Katie E Leonard. Why multitracer surveys beat cosmic vari-

ance. Monthly Notices of the Royal Astronomical Society, 432(1):318–326, 2013.

[5] L Raul Abramo, Lucas F Secco, and Arthur Loureiro. Fourier analysis of multi-

tracer cosmological surveys. Monthly Notices of the Royal Astronomical Society,

455(4):3871–3889, 2015.

[6] L Raul Abramo, Lucas F Secco, and Arthur Loureiro. Fourier analysis of multi-

tracer cosmological surveys. Monthly Notices of the Royal Astronomical Society,

455(4):3871–3889, 2016.

[7] Ronald J Adler, Brendan Casey, and Ovid C Jacob. Vacuum catastrophe: An

elementary exposition of the cosmological constant problem. American Journal of

Physics, 63(7):620–626, 1995.

129



[8] Amir Aghamousa, Jessica Aguilar, Steve Ahlen, Shadab Alam, Lori E Allen,

Carlos Allende Prieto, James Annis, Stephen Bailey, Christophe Balland, Otger

Ballester, et al. The desi experiment part i: Science, targeting, and survey design.

arXiv preprint arXiv:1611.00036, 2016.

[9] N Aghanim, Y Akrami, M Ashdown, J Aumont, C Baccigalupi, M Ballardini,

AJ Banday, RB Barreiro, N Bartolo, S Basak, et al. Planck 2018 results. vi. cosmo-

logical parameters. arXiv preprint arXiv:1807.06209, 2018.

[10] G Aldering, S Perlmutter, RA Knop, P Nugent, G Goldhaber, DE Groom, MY Kim,

CR Pennypacker, S Deustua, R Quimby, et al. Measurements of omega and lambda

from high-redshift supernovae. In Bulletin of the American Astronomical Society,

volume 30, page 1305, 1998.

[11] Pierre Astier and Reynald Pain. Observational evidence of the accelerated expansion

of the universe. Comptes Rendus Physique, 13(6-7):521–538, 2012.

[12] Daniel Baumann. Tasi lectures on inflation. arXiv preprint arXiv:0907.5424, 2009.

[13] N Benitez, R Dupke, M Moles, L Sodre, J Cenarro, A Marin-Franch, K Tay-

lor, D Cristobal, A Fernandez-Soto, C Mendes de Oliveira, et al. J-pas: the

javalambre-physics of the accelerated universe astrophysical survey. arXiv preprint

arXiv:1403.5237, 2014.

[14] Jose Luis Bernal, Licia Verde, and Adam G Riess. The trouble with h0. Journal of

Cosmology and Astroparticle Physics, 2016(10):019, 2016.

[15] Francis Bernardeau and Lev Kofman. Properties of the cosmological density distri-

bution function. arXiv preprint astro-ph/9403028, 1994.

[16] Carl Brans and Robert H Dicke. Mach’s principle and a relativistic theory of grav-

itation. Physical review, 124(3):925, 1961.

[17] Philippe Brax and Patrick Valageas. Structure formation in modified gravity sce-

narios. Physical Review D, 86(6):063512, 2012.

[18] BC Bromley, MS Warren, and WH Zurek. Estimating Ω from galaxy redshifts: Lin-

ear flow distortions and nonlinear clustering. The Astrophysical Journal, 475(2):414,

1997.

130



[19] Salvatore Capozziello and Valerio Faraoni. Beyond Einstein gravity: A Survey of

gravitational theories for cosmology and astrophysics, volume 170. Springer Science

& Business Media, 2010.

[20] Sean M Carroll and Grant N Remmen. A nonlocal approach to the cosmological

constant problem. Physical Review D, 95(12):123504, 2017.

[21] Santiago Casas, Martin Kunz, Matteo Martinelli, and Valeria Pettorino. Linear

and non-linear modified gravity forecasts with future surveys. Physics of the dark

universe, 18:73–104, 2017.

[22] Lucinda Clerkin, Donnacha Kirk, M Manera, O Lahav, F Abdalla, Adam Amara,
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